RC 15953 (#70916) 7/23/20
Computer Science 7 pages

Research Report

Visualizing Computer Memory Architectures

Bowen Alpern, Larry Carter and Ted Selker

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for
publication. It has been issued as a Research Repol for early dissemination of its tontents and will be distributed
outside of IBM up to one year after the date indicater a* the top of this page. . In view of the transfer of copyright to
the outside publishier, its distiibution outside of 1BK niior to publication should be limited to peer communications
and specific requests. After outside publication. requests shendd he filied enly by reprints or legaily obtained copies
of the article (e.q.. payment of royaities).

esearch Division
Imaden + T.J. Watson + Tokyo * Zurich

lomni

Visualizing Computer Memory Architectures

Bowen Alpern, Larry Carter, and Ted Selker

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

Abstract — The Memory Hierarchy Framework is a conceputal model together with a visual
language for using the model. The model is more faithful to the structure of computers than the
Von Neumann and Turing models. It addresses the issues of data movement and exposes and unifies
storage mechanisms such as cache, translation lookaside buffers, main memory, and disks. The visual
language presents the details of a computer’s memory hierarchy in a concise drawing composed of
rectangles and connecting segments. Using this framework, we have improved the performance of a
matrix multiplication algorithm by more than an order of magnitude. We believe the framework gives
insight into computer architecture and performance bottlenecks by making effective use of human
visual abilities.

Visualizing Computer Memory Architectures

Bowen Alpern, Larry Carter, and Ted Selker

IBM Thomas J. Watson Research Center, Yorktown Heights. New York 10595

Abstract — The Memory Hierarchy Framework is a
conceputal model together with a visual language for
using the model. The model is more faithful to the struc-
ture of computers than the Von Neumann and Turing
models. it addresses the issues of data movement and
exposes and unifies storage mechanisms such as cache,
translation lookaside buffers, main memory, and disks.
The visual language presents the details of a computer’s
memory hierarchy in a concise drawing composed of
rectangles and connecting segments. Using this frame-
work. we have improved the performance of a matrix
multiplication algorithm by more than an order of mag-
nitude. We believe the framework gives insight into
computer architecture and performance bottlenecks by
making effective use of human visual abilities.

1 Introduction

This paper is a case study in the application of visual
language techniques 10 a limited problem domain. This
domain is performance tuning of programs to make efficient
use of a particular computer’'s memory architecture. We
present a detailed conceptual model of computer memory,
and a visual language for comprehending the model.

Models allow people to concentrate on relevant features
in a problem domain. Some models employ a visual lan-
guage. the systematic use of visual techniques to represent
the model [7]. These techniques have been shown to improve
problem solving performance in structural domains [5).

A good example is the Turing machine [1] model intro-
duced in the 1930's to understand what functions are com-
putable. A Turing machineisa mathematical construct that
manipulates strings of symbols. It is most easily described
visually: a long tape is divided into cells. each of which can
hold a single symbol. A cart rolls along the tape, reading and
possibly modifying the symbol under it. Often, a simplified
visual language is used to convey specific Turing machine
configurations. The position of the cart is represented by
a line under a particular symbol and the program driving
the cart is also presented diagrammatically. Invented before
computers. the model is still used as an aid for teaching.

Since the Turing machine bears little relationship to the
architecture of real computers. it is no surprise that the
model is not useful for constructing efficient computer pro-

grams. Instead. programmers use the Von Neumann or RAV
model [1]. A computer is modeled as a memoryless processor
and a separate random access Memory. The assumption is
made that each memory reference takes one unit of time.
This assumption permits the running time of a program
to be analvzed. The model allows programming without
consideration of hardware details. Unfortunately. some of
the details ignored by the model have a significant impact
on performance. Thus. RAM analvsis may be inaccurate.

In trying to analyze and improve some programs. we
found the RAM model inadequate. Section 2 describes the
Memory Hierarchy Framework, a more accurate computer
model together with visual language for presenting it. Sec-
tions 3 and 4 show how the framework can be used to illus-
trate and avoid performance bottlenecks in matrix transpo-
cition and multiplication algorithms. Section 5 shows how
parallelism is reflected in the framework. The rest of the
paper discusses insights gained by using the framework and
suggests areas for future research.

2 Memory Hierarchy Framework

This section presents a framework for understanding com-
puters’ memories. The framework has two parts: a concep-
tual model and a visual language that communicates the
model and facilitates performance tuning. ;

We first mention some features of real computers. A

" computer’s memory is organized as a set of increasingly fast

memory units; for example, disk, main memory, cache and
registers. Blocks of data are transferred between units along
wires. Moving a byte automatically moves all the bytes in
the same block as well. Different wires and memory units
have different speeds and sizes. as well as other peculiarities.

The above features affect performance significantly. Often
programs can be made to run many times faster by properly
coordinating data movement among the different units [4].
Unfortunately, programming languages and the RAM model
hide the irregularities of memory. Few people master the
ability to tune programs effectively. Our work is aimed at
making this skill less esoteric.

Conceptually, we model the non-uniform nature of mem-
ory by a hierarchy of memory modules. Each memory module
consists of a bor that can store data and a bus that can move

3 Matrix Transposition

Transposing a matrix is a simple problem. However,
ignoring the memory hierarchy can significantly degrade the
performance. \We use our framework to illustrate this.

The following FORTRAN code assigns the transpose of
matrix A to matrix B.

DO 10I =1, K
DO 10 J 1, B
10 B(J,I) = A(I,D)

Consider any memory module where N is larger than the
blocksize and the blockcount. Arravs are stored by column in
FORTRAN. When A(1.1) is referenced. a block containing
part of the first column of A is transferred into the memory
module. Next A(1.2) is referenced. and a second block is
brought in. After blockcount steps. the memory is full. and
some block (tvpically the first brought inj must be discarded.
This process - bringing in a new block and discarding an old
- continues. Unfortunately. by the time the next row of 41s
begun. the needed data have already been discarded from the
memory module! The result is excessive data movement —
each assignment takes (a! Jeasty the amount of time required
Lo transfer & whole biock of data. This situation. where the
cost of transferring data swamps the cost of computation. is
called thrashing.

The framework shows tliis problem in a natural way.
Superimpose a square representing the array on top of the
memory module. Notice that the vertical direction of both
the arrav and the memory rectangle represent contiguous

storage. If the square fits comfortably inside the rectangle, -

the entire array will fit into the corresponding memory unit.
The module will not be a performance bottleneck. If the
array is too tall but not too wide. the module can hold
one block’s worth of each column. Since each block will
be brought in only once, performance will not be degraded
by unnecessary data transfers. But one must examine the
problem more closely when the array is too wide for the
rectangle, or when part of the array falls within a shaded
portion.

The unnecessary block transfers of the A matrix would
be eliminated by simply interchanging the order of the loops.
Unfortunately, the B matrix would now have the identical
thrashing problem.

There is a way out [6]. The 4 and B matrices are par-
titioned into subarravs small enough that two can fit into
the memory module. The program works on one subarray
of A at a time. transposing it into the symmetrically located
subarray of B. These subarrays must be further partitioned
into subsubarrays so they can fit into the next lower memory
module in the hierarchy. The entire process is shown in
Figure 2. A program that implements the picture for a k-
level memory hierarchy would have 2(k—1) nested DO-loops.

We use a new scale inside the memory rectangles. As
described earlier, the logarithmic scale allows the entire hier-
archy to be compared in 2 single image.

The schematic diagrams inside the rectangles highlight
issues in moving data between levels. Specifically the shaded
submatrices of a level are the data which is transfered to the

next level. It is expanded to the next level but retains its
shape.

F--—--- R
1 H
i i
i ;
1 1
1 ; 1
1 5 1
i . 1
1| : i
1L 3 1
L. i
.::_...-..J--.,._.E._..
% 1 :
FH=FLE
r}'“'a‘g"'%ﬂ
TR i
o]
1 - 1
i i i
i L ;_J T
i ERE i
| £ 8 R 1
L...-.‘,-- g,..&..'z_.-...._l
St
- “I
i 3 1
1]
1 1

I, l- ‘
:-'—'l.l ..l
]

L

5 Parallel Computers

Currently there exists a vast collection of different archi-
tectures for machines with more than one processor. Such
parallel and distributed machines can be modeled in the
Memory Hierarchy Framework. The visual Janguage allows
several memory modules to hang below a single rectangle.
To avoid overlapping rectangles. busses can have horizontal
segments: the transfer time is depicted by just the vertical
distance the bus covers. An entire machine is represented
as a tree of memory modules as in Figures 4, 5. and 6. The
multiple processors are at tlie leaves of the tree at the bottom
of each picture.

The semantic meaning of multiple bus lines hanging below

a rectangle is that data can be transferred along 2li of the
busses simultaneouslv. The busses can carry data from dif-
ferent addresses in the shared memory module.

As with anv model. certain hardware restrictions have
been ignored. In particular. each machine and operating
svstem has a specific set of rules about data sharing and
data protection. A programmer may need to consider these
issues carefully for a particular application.

The pictures in Figures 4. 5. and 6 are representative of
three very aissimilar multicomputer architectures: the super-
computer. the massively parallel computer. and heteroge-
neous networks of computers. The different architectures
are reflected in how much branching is at different levels.
Any particular machine in a given class will also varv from

To
Secondary
Storage
_____ =
T Y
i | RAM
; : DISK
— i

MAIN
MEMORY

CACHE

SCALAR
REGISTERS

VECTOR
REGISTERS

_,
| T

Fo——=-

Figure 4. A Supercomputer.

the pictures in specific details, such as the dimensions and
number of processors.

Figure 4 is a typical picture of a supercompuler. such as
the CDC and CRAY machines and large IBM mainframes.
These machines have a relatively small number of processors,
and the branching occurs near the leaves. Supercomputers
often have vector processors that allow them to “crunch”
data extremely efficiently, provided that data are arranged
properly in memory. The vector processor shown in Figure 4
is long. thin. and connected by a relatively long bus. This
describes a machine that requires vector data to be stored
contiguously. Some machines have more flexible vector pro-
cessing. They would be depicted with shorter and wider
vector rectangles.

Some supercomputers gain speed by having several func-
tional units (ALUs) that work on data in a single group of
registers. These could be represented by another level of
branching below the registers. Again. it is interesting to
see that the parallelism of supercomputers is concentrated
towards the leaves.

e
{ HOST
S E —_——
s besnmmome 1 SHARED
H ; MEMORY
ERu 5 EL E EENE
A 1™ """1LOCAL
e i 4 - MEMORY
<=7 ™3 1 REGISTERS

Figure 5. A Massively Parallel Architecture.

Another class of machine, the massively parallel com-
puter, has a very high branching factor near the middle, but
little at the top or bottom (see Figure 5). The particular
machine of the picture has 1024 processors, each with a
quarter megabyte of memory, connected by a fast switching
network. The machine has a communication latency of 32
cycles and allows data to be transferred at a rate of 1 byte
per cycle. The picture approximates this by showing that 32
byte blocks can be transferred in 64 cycles. The picture is
accurate within a factor of 2 for any sized message.

Another class of multicomputer is the loosely coupled
network. Pictures of these machines are characteristically
bushy near the root of the tree, as in Figure 6. A set of
workstations of different capabilities can share the same disk
memory (fileservers). Files are moved through the network.
The top rectangle represents the totality of data stored in
the network. Although these data are distributed physically,
the system behaves as if there is a memory unit containing
a copy of all the data.

Copies may be requested from:

IBM Thomas J. Watson Rescarch Center
Distribution Services I'-11 Stormytown
Post Office Box 218

Yorktown Ieights, New York 10598

