
Minerva : A Smart Video Assistant for the Kitchen

by

Shyam Krishnamoorthy

B.Tech., Computer Science and Engineering (1999)

Indian Institute of Technology, Bombay, India

Submitted to the Program in Media Arts and Sciences

School of Architecture and Planning

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Media Arts and Sciences

at the

Massachusetts Institute of Technology

September 2001

@2001 Massachusetts Institute of Technology

All rights reserved

Signature of Author:

Program in Media Arts and Sciences

July 25, 2001

Certified by:

Dr. Andrew B. Lippman

Principal Research Scientist

Program in Media Arts and Sciences

Thesis Supervisor

Accepted by:

Dr. Andrew B. Lippman

Chairman, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

ROTCH
MASSACHUSETTS I TITU

OF TECHNOLOGY

OCT 1 2 2001

LIBRARIES

Minerva : A Smart Video Assistant for the Kitchen

by

Shyam Krishnamoorthy

Submitted to the Program in Media Arts and Sciences
School of Architecture and Planning

on August 14, 2001 in Partial Fulfillment of the
Requirements for the Degree of Master of Science in

Media Arts and Sciences

ABSTRACT

Minerva, a video assistant for cooking, is controlled by the actions of the user. Specifically, the content

and format of the video shown on Minerva's display are decided by the food that one places on the kitchen

counter. Thus, it aims to develop new ways of interactivity and control for media that solve the problem

of content choice in an innovative and useful manner. In parallel, it is a study of the applicability of

a generalized image-matching algorithm [1] [21 and into reflecting a program's awareness of the context

of its execution in its behavior. Minerva is, for the user, a personalized kitchen assistant, a culinary

knowledge-base and a cooking tutor, all built into it by design rather than by accident.

Minerva tackles problems faced by current computer systems, including trade-offs between automatic

program execution and user control, access mechanisms for media from large databases, retrieval tech-

niques for recipes and cooking information, and embedding computing systems in the home environment

with useful features without compromising on non-obtrusiveness.
The system has a camera that looks at the kitchen counter and a recognition engine that analyses the

ingredient placed under the camera. Together, they form part of the input that decides the choice for

the content of the media displayed. Contextual variables, including the user's identity and preferences

form the other part of this input. A database look-up program that returns the location of the video

and recipe image appropriate for these input forms the retrieval sub-system and a player for the cooking

video retrieved displays the media chosen. Automatic control for the media is enabled wherever possible,

allowing for prior information about the user to affect the choice and format of the cooking video displayed.

This thesis describes the motivations, concept and implementation of Minerva, ending with an eval-

uation of its performance and impact, as well as directions for future work.

Thesis Supervisor: Dr. Andrew Lippman
Title: Senior Research Scientist, Program in Media Arts and Sciences

This work was supported by the Digital Life Consortium, MIT Media Laboratory, 2001

Thesis Committee

Supervisor:

Dr. Andrew Lippman

Senior Research Scientist

MIT Media Arts and Sciences

Reader:

Dr. V. Michael Bove Jr.

Principal Research Scientist

MIT Media Laboratory

Reader:

Prof. Ted Selker

Associate Professor

MIT Media Arts and Sciences

d -, -

Acknowledgments

I have many people to whom I owe my happiness and the new opportunities I encoun-
tered during my two years at the Media Lab. I am grateful to all of them.

I would like to thank my advisor, Andy Lippman, for the guidance, opportunity and
resources he has provided me during the course of my degree.

I am grateful to my readers, Mike Bove and Ted Selker, as well as Ms. Barbara
Wheaton, for sitting down with me and helping me refine my ideas, and my thesis.

Thanks to Sailu and Bryan for making the project easy and fun to work on, as well as
helping to put all the parts together in time.

Stefan Agamanolis and Nuno Vasconcelos have done great work in their respective
fields, and I thank them for helping me understand and use that work effectively.

Kim Schneider, Deborah Widener and Polly Guggenheim have made our lives so easy
that I do not know what the students would do without them.

During my two years here, my lab-mates Jim, Kwan, Ying, Thomaz and Floyd have
been great friends, and bore me out wonderfully. Thank you.

Of course, I thank my house-mates and all my friends from school, IIT and MIT for
all that they have offered me, and all that they have put up with. Its been a fun ride !

The three women in my life, Amma, Meera and Radhika have been my inspiration.
Thank you for everything.

Contents

1 Introduction 9

1.1 System Overview 9

1.2 Motivation and Goals . 10

1.3 Usage Scenario . 11

1.4 Overview of the Document. 12

2 Background 13

2.1 Video, Interactivity and Media Control . 13

2.2 Visual Information Retrieval . 15

2.3 Context-sensitive System Design .. 17

2.4 Isis and Viper . 18

2.5 Computing in the Kitchen, and for the Kitchen 20

2.6 Temporal Classification of Video Sequences . 21

3 System Design and Architecture 23

3.1 Hardware and Programming Languages . 23

3.2 Interface Design . 24

3.3 Back-end Design . 26

3.4 Control Flow . 28

4 System Implementation 31

4.1 Running Minerva . 31

4.2 Interface Screens . 37

4.3 Recognition Module . 37

4.4 Database Tables . 40

4.5 Use of Isis and Viper . 42

5 Evaluation 47

5.1 The system and its components . 47

5.2 Qualitative Survey . 49

6 Conclusions and Future Work 55

6.1 Lessons Learned . 55

6.2 D raw backs . 56

6.3 Future Work... 56

A Qualitative Evaluation Questionnaire 58

WNW.

Chapter 1

Introduction

1.1 System Overview

The Minerva system is a perception based cooking assistant for the kitchen. It consists of a

camera that looks at the kitchen counter, and a touch-screen for the display. The user places

food items, that he/she would like to cook with, on the counter and the camera takes a snapshot

image of it. This image is passed to a recognition engine that identifies the ingredients. These

ingredients are then matched with a database of recipes to find the dishes that best utilize these

and match the user's preferences and profile. The user is then presented with a choice of recipes,

from which he/she chooses one to watch. The system then plays a video of the cooking show,

with customizations whenever possible. Preferences of the user, including his culinary and health

choices, are taken into account and affect the choice of video to be shown, the manner in which

the video is shown, as well as the initial screen where a television show is displayed (simulating

the experience of a television in the kitchen).

Imagine the following scenario :

Jeremy is thirty years old, a little overweight and interested in Asian food, especially seafood.

He walks into his kitchen after work, turns his television on and opens the refrigerator. Sounds

familiar? The illusion fades when Jeremy grabs some eggs and noodles, drops them on the counter

and taps his television screen. The screen changes to show him three dishes he could cook with

the eggs and noodles, placing the low-fat Asian seafood items on top. He taps on one of them

and chooses a few more personalizations, and a cooking video for that dish starts playing, in the

requested format - short and humorous. Jeremy is not an expert cook, and he was happy that

all the dishes were easy to make, and used all his favorite ingredients. Not only were Jeremy's

various food and health preferences taken into account, they even affected the way the video was

presented to him. Jeremy uses Minerva, not only for his daily food choice and cooking lesson,
but also to figure what he can make with those spare items he has in his refrigerator.

1.2 Motivation and Goals

Minerva is an exploration into the amount of interactivity that is necessary with computer video

applications. Can a system function without any input from the user? Or is explicit input and

complete control over the actions of the computer the way to go? One approach is to create

systems that used as much information as possible from what is already known about the user

and the environment to direct their actions, and thus use minimal interaction from the user.

Minerva adopts this approach and thus allows the user to continue with the activity that he/she

is doing, pausing only for minimal interaction with the system. This is well-suited for, and almost

necessary when we try to embed computing systems in the home environment where the primary

activity is not one of using the computer. Instead, the computing systems are inconspicuous

and only serve to assist the person in his/her activity. The limited set of interactions that

are chosen should be well-thought out, and placed in the system only if they are sufficiently

important in assisting the task at hand. As mentioned in [91, it is necessary to take the context

and environment in which the system will be used while designing the system.

Another aspect that shaped Minerva was looking at the applicability of a generalized image

matching algorithm [1]. In Minerva, the same algorithm that is used to recognize the ingredients

is also used as the base to split videos into individual shots and scenes [4], so that the viewer may

directly jump to the next scene in the show if desired. Indeed, if the algorithm could successfully

be adapted to both these uses, it could , with slight modifications, be applicable to many other

uses, some of which could be face recognition, character recognition, web-based image searching

and more.

Lastly, computing in the kitchen is a relatively new field. The Counter Intelligence group

[12] at the Media Labs, MIT, builds computing systems that will be used in the "Kitchen of the
Future". Using computers in the kitchen takes many forms - from enhanced micro-controllers
in kitchen appliances, to new and innovative aids for existing cooking practices. Minerva is an
attempt to use computing in the kitchen to simplify the process of deciding what to cook and
learning how to cook it.

1.3 Usage Scenario

Imagine Jeremy of the previous example using Minerva for assistance in his everyday cooking

activities. He is presented with various screens of Minerva, one for each step of the control flow

of the program, and can switch between them based on what he wants to see. He starts by

choosing the profile under which he will use the system. This process involves simply touching

his name, displayed on the initial screen, on a touch-sensitive flat panel display. He would then

be shown a television show, and it would automatically start with Jeremy's favorite channel.

The Minerva system consists of a main control process, written in the Isis programming

language[16], that interfaces to the other modules of the program. Thus, this control module

would keep track of the operating profile to ensure that Jeremy's preferences are taken into

account while calling the various sub-modules.

When he is ready to start using the system, he presses a button on the screen and it changes

to show the Minerva screens, Jeremy then starts using the system by taking food items that he

would like to use in his cooking that day, and keeping them on the counter. At the press of a

button on the screen, a camera looking at the kitchen counter takes a snapshot of the ingredients

on it. This starts the recognition step.

The snapshot of the food items is passed to a recognition program [1] that analyses the image

and identifies the ingredients in it. Multiple ingredients may be placed at a time. Based on the

ingredients recognized, a recipe database is accessed and a query is done for the best matching

recipe for the given ingredients. This query takes into account the dietary and health preferences

of Jeremy. The query returns the location of the video of the cooking show for this recipe. Thus,

if Jeremy had placed some chicken and noodles on the counter, Minerva will find recipes that use

both these ingredients, as well as make sure that they are low-fat recipes. It uses information

stored in Jeremy's profile to make these decisions. It then starts playing the cooking video for

that dish.

Functionality to play, pause and stop the video, as well as to jump between scenes is provided.

This functionality lets Jeremy continue cooking and watching the video in between. When he

has finished boiling the noodles, if the video still shows the scene to cook the noodles, he can

directly jump to the next scene and start learning how to cut the chicken.

A tag marks whether the video played is a normal video or a Viper video [171. If it is a

normal video, it is played on screen. If it is a viper video, Jeremy can then specify certain factors

that will affect the presentation's length and content before it starts playing. So, if Jeremy is in

a hurry or has already seen the video and wants a short version, only important scenes in the

video will be displayed.

In summary, the camera and the touch-screen display act as the I/O components of the sys-

tem, while the recognition engine and the database query program, together with the controlling

Isis process, form the back-end components. A separate module [4] is executed prior to the

system's use for splitting non-Viper cooking videos into individual shots and scenes. Together,
these modules act under the control of the main module to create a smooth presentation and

offer helpful assistance to users like Jeremy.

1.4 Overview of the Document

This thesis, including the introduction, consists of six chapters. The following chapter provides

the background research that this work draws upon. The third and fourth chapters describe the

design and implementation of the Minerva system. The fifth chapter looks at the performance of

the system with a quantitative as well as a qualitative evaluation. The sixth chapter concludes

this document, and looks at the lessons learned, improvements that can be made and future

work in this direction.

Now

Chapter 2

Background

This chapter steps through the background work that Minerva is based upon, and how each

different piece of research ties in with the final implementation of Minerva.

2.1 Video, Interactivity and Media Control

Researchers have been looking at innovative ways of interactivity and control for video and other

forms of media. Many projects using a variety of techniques have been explored. Some systems

that led to the ideas behind Minerva are described below.

Christakos, Lippman et al. have looked at tagged representations of media - small devices

that carry only a few bytes of data that identify the media stream that they represent [7] [6].

Once the required media stream is identified, it can be located anywhere on the local network

or the Internet and accessed. Such a representation, using only an identification for the media

stream, is more efficient as it removes the need to actually carry around the media on a compact

disc or a DVD. The actual system in which this technique was used, a distributed network video

player, was implemented with a multicast algorithm that was used to retrieve the data from the

network. The interface consisted of small coin-sized tags that had a few bits of information in

them about the stream they represented. When these tags were thrown onto a pad in front of

the display, an RF tag-reader embedded in the pad would pick up these bits of information, use

these to identify and access the requested data stream. It would then play the video on the

display corresponding to that pad.

Another technique in the above project looked at visual and iconic representations of the

media to be played. Thus, a poster of a movie would represent the video stream for that movie.

Embedded in the poster was a light sensor that would detect the amount of light falling on it.

---- ----- ---- -

When the user wanted to play that particular movie, he/she would point a laser light from a

pen-sized device at the poster. The poster would then transmit its identification and location

on the network, and the closest monitor would start displaying the video. The same laser pens

were also used for further controlling the video (start/stop/pause etc.).

Following this, Mueller, Thomaz and Lippman looked into controlling media directly through

actions and physical objects. ImpactTV 115] simulates a remote control for television, in which

the channel to be displayed is chosen by directly throwing relevant objects at the television

screen. For example, throwing a child's toy at the screen changes the program displayed to a

children's network show. Even though the technique is not directly deployable, as it does not

scale to a large number of channels, it looks at a new way of control for media streams that may

be well suited for application in other fields.

Arai, Machii et al. [5] have attempted to retrieve files based on the user's actions on real

objects on a desktop. The user controls a light pen, and performs activities with the objects on

his desk. A camera looks at this activity and retrieves text files indicated by the activity. These

files are then projected back onto the desktop so that the user can view them.

The author of this thesis, along with

Lippman, has looked at interactivity and

video when groups of people are involved.

The driving force behind this research

is that group interactions on a network

scale exponentially, compared to poly-

nomial scaling in one-to-one conversa-

tions. GroupTV made discussion groups

that were linked to a particular televi-

sion show. As people saw television,

they would be able to talk to a set of

people, all of whom were watching the

same show that was playing. Flipping

Figure 2.1: GroupTV channels would thus change the "chat

room" and the discussion group.

All the above projects were successful in creating a easy and intuitive interface for choosing

the media stream. Minerva uses these ideas in its design. It looks at how interactivity and

control in media could be placed in a situation where the interaction was implicit in the activity

of the person, and this activity would be the control for the media stream. This approach

lends itself ideally to the home computing scenario where computing is not the primary activity

and direct interaction is not always preferred. Thus, the user would continue in his activity of

cooking, and the act of taking the ingredients out of the refrigerator and keeping them on the

kitchen counter was the first part of his/her interaction. The general architecture of this system,

viewed in this sense, is well applicable to other scenarios where users need to continue in their

activity, without being distracted by the interface, but would still benefit from the information

and behavior provided by the system. As an example, we could imagine the system being used

in a gymnasium, with a program that understood the specific exercises followed by the user.

This understanding could then drive the behavior of the system so that it could play a video of

how to perform that specific exercise etc. Of course, as mentioned in the section 2.4, it would

be important to make sure that such a system in sensitive to the context of its use. Thus, if the

person is an experienced gymnasium user, it would be better to give him/her only high level tips

and hints instead of a tutorial-style display and so on.

2.2 Visual Information Retrieval

One of the important components in Minerva is the recognition engine. This engine is based on

previous work on image similarity measures by Vasconcelos and Lippman. This section gives a

brief introduction to this technique. Even though other systems that identify foods have been

more successful, Minerva utilizes this technique to explore the possibilities of using a generalized

image similarity algorithm for specific applications. Specifically, the VeggieVision system at IBM

[8] achieves a high rate of success at identifying over 150 different produce types. In spite of a

relatively lower success rate using the system described in [1] [21, we see a significant contribution

in the manner in which their algorithm can be adapted to many situations. A description of the

considerations for image similarity taken into account in [1] follow.

The first step in searching a set of images by looking at their similarity is to characterize them

sufficiently, so as to be able to distinguish between the categories. As it is impractical to directly

compare the pixels, the image is first transformed to a feature space, and a feature representation

is found for each image. This feature representation describes how the image populates the feature

space. The search mechanism then involves finding an appropriate retrieval measure that uses

this feature representation to analyze the similarity between the images.

Image Representation The author, in [11, shows that the feature transformation has to

be invertible in order to decrease the probability of a wrong match. On the other hand, the

feature transformation should fulfill the role of dimensionality reduction, so as to reduce the

complexity of representation in the feature space. Given these constraints, a trade-off between

invertability and dimensionality reduction is sought in the choice of the feature transformation.

This trade-off is found in the Discrete Cosine Transform (DCT), as it results in a relatively

small number of relevant parameters and these have more perceptive significance than a direct

Principal Components Analysis (PCA).

A feature representation is now sought that will describe how each image populates the

DCT feature space. Traditionally, two approaches have been commonly used. Characterizing

features by their moments, such as mean and covariance, has been used for texture recognition

- the relatively homogeneous texture patches that in the standard Brodatz database are well

approximated by a Gaussian density. Image histograms, the other common approach, have been

applied to object recognition problems, and work well with the non-homogeneous images found

in the Corel and Columbia databases. Unfortunately, the histogram technique has exponential
complexity with respect to the dimension of the feature space and cannot be used effectively

with all types of images. Vasconcelos therefore suggests using a Gaussian mixture model that

is a weighted sum of individual Gaussian densities. They show that this model, when combined

with Bayesian retrieval techniques, matches or outperforms other techniques for image similarity

matching.

Image Similarity If we view the retrieval problem as one of Bayesian inference [3], the goal is
to find a map from the set of feature vectors (described above) to the image class, that minimizes

the probability of error. The author, in [1], shows that this technique can take advantages of

prior statistical knowledge to better find the matching class for a given image. In Minerva, the
system currently does not incorporate prior knowledge into the retrieval process, and all image

classes are considered equally likely. In this case, the Bayesian retrieval technique simplifies to be

a maximum likelihood (ML) classifier. This gives an augmented distance metric that performs
more robustly than the Mahalanobis distance and returns a probability of error that tends to
the Bayes classifier error, faster than the density estimates tend to the correct densities. This
characteristic allows us to use coarser estimates of the density than in other algorithms, but with
just as accurate results.

Once images have been represented in the feature space, a set of images belonging to the
same class may be combined into a single representation using hierarchical mixture models,
which combine many Gaussian mixtures into one mixture. This is also described in [1]. This

technique is used by Minerva to make single mixture models for each image, which are then

combined to form hierarchical mixture models for each ingredient. Minerva performs ingredient

recognition by creating a database with the hierarchical mixture models of training images of all

the ingredients. After this, when a new ingredient is to be recognized, a mixture model of the

image of the new ingredient is calculated. This model is then compared with each of the models

for the training ingredients, and a probability measure representing this similarity is obtained

using the above described technique. The ingredient of the training mixture models that is most

similar to the mixture model for the query image is then taken as the matching ingredient.

2.3 Context-sensitive System Design

Minerva is situated in the kitchen - a busy, and at the same time personal, space in the home

- and introduction of computing in such a space is bound to make the interface intimate and

omnipresent. Such situations demand that the design of the computational system takes into

account the environment and the people around it. The system should use this information

to correspondingly modify its behavior, making it easier to use and more in touch with its

surroundings. In [9], the authors describe the increasing importance of context-awareness in the

design and implementation of a computational system.

Context-aware systems should

sense and remember information

Contextabout the person and the situa-
-Sate of the user
- State of the physical environment tion in order to reduce the com-
-Sate of the com putational environmert
- History of user- computer-environment interactin munication and effort required on

the part of the user. To effectively

reach this goal, the system must

Explicithave this information built into its
Inputcreation and maintenance of user,

Applicationtask and system models. In ad-

dition, these models should drive

the behavior of the system to ef-

fectively perform its function. The notion of context-awareness and the importance of the user,

task and system models are further described in [10], and the diagram indicates the status that

contextual variables occupy in a computer program. In addition, the authors argue that context

in the case of user interface design should translate into its visual language. It is also important

to simplify the interface without reducing the functionality. These factors are taken into account

in the design of Minerva.

In the case of Minerva, the user model is the most important, and it is created on installation.

The model contains information about the user's current state as well as his/her culinary and

health preferences. This information is maintained in a database and can be updated or learned

during the system's execution. The main control process takes into account the user model to

drive the behavior throughout the use of Minerva. The user model not only controls the movie

that is played on starting, but also the recipes that are chosen for a given set of ingredients,
the order in which the recipes are displayed and the format in which the final video is played

(if it is a Viper video [17]). The computer task model keeps track of the screen of the Minerva

program that is currently active, and handles the behavior accordingly, while the system model

keeps track of the system state variables (is the movie playing or stopped etc.).

2.4 Isis and Viper

Isis is a programming language for responsive media [16]. It is specially designed, in syntax

and in internal structure, for fast and complete development of media applications and the

interfaces for these applications. Using a core language element, Isis has multiple layers, each

with additional functionality, both in the form of different abstraction levels, and in the form of

software libraries. Isis supports video capture, OpenGL and SDL. Dozens of projects, in such

diverse fields as aware portals, interactive art installations and computer vision have been able to

exploit the advantages that Isis offers in terms of ease of use and functionality. All this makes it
an ideal environment for creating the Minerva user interface as well as the main control module.

Since Isis is an interpreted language, computation intensive processes like image processing are

written in native C code and invoked by Isis. Minerva uses Isis for the main control loop, but
calls pre-compiled C code for the image recognition, database look-up and object separation

routines.

Viper [17], built on Isis, is a system that aids the creation of responsive video - video sequences
that have multiple streams encoded in them instead of one, and from which a single sequence is
organized to make a presentation. The content creator can decide how the individual clips are put
together to create a complete video, in a simple but powerful manner, and even include various
external factors that affect the final organization of clips in the video. Minerva is ideally suited
to apply Viper to create and present cooking videos that are specifically tailored to the user's

preferences. Contextual factors pertaining to the user and the environment (culinary preference,
items in the refrigerator etc.) can be used to create a video that is specific to the situation. As
an example, if the user likes sea food and he/she is out of butter, the video shown could be a

-- -_- -- -----

version that makes the same dish using shrimp, and uses margarine instead of butter. A special

Viper production was made for Minerva - a cooking show for the recipe "Thai Mango Curry".

Creating such a Viper movie with any system involves the following steps:

" Planning: The creator of the productions needs to decide what the video would consist

of, what variables affect the behavior of the program, how these variables will be collected

and represented, how each of these factors will translate into control factors for individual

clips, as well as how to make the production in a simple and efficient manner.

" Capturing Media: Since multiple clips, which will form different parts of the final version of

the movie displayed, have to be shot, it is practical to think of ways to reduce the amount

of time making the video by intelligent use of the capture process. For example, in the case

of a cooking video, all the clips linked to a particular style of the dish could be shot in one

go, and then they can be edited into individual clips. The media, after capture has to be

digitized, currently into the Isis movie format. Various converters can be used for these,

including special utility functions (isisu) that have been packaged with the Isis library for

this purpose.

" Annotation: A utility program, provided with the Viper tools, allows the content creator to

edit the video into a database of individual clips and annotate them with appropriate key-

words, scale factors etc. Thus, each clip that will be part of some version of the final movie

is extracted from the videos and annotated with keywords that describe that particular

clip. These keywords could correspond to objective features of the clip like its chronolog-

ical order, length etc. or subjective features like its importance, the level of humor in it,

whether it is a violent clip etc.

" Editing Guidelines: These are, in some sense, the most important pieces in the Viper

production process. The editing guidelines lay out rules for putting together an Isis video

from the individual clip database created earlier. The sections defines the relationships

between the factors that affect the presentation, and the resultant expected values of the

features annotated on the separate clips.

* Analysis: Once the above stages are completed, the final presentation can be viewed using

tools that are provided with the Viper system. These tools allow the content creator to see

the videos and their responses to the various factors that affect them. The tools also allow

for graphic visualization of the sequencing of the individual clips that have been extracted

from the database to create the final presentation.

Once the above steps are completed, the production is integrated into another software system (in

this case, Minerva) by using Macaroni 116] objects that encapsulate the Viper videos. Functions

are provided to create a presentation from inside any Isis program, and the factors that affect

the video are simply passed as parameters to these functions. Convenience functions that play

and pause the video are also provided, and they handle both the audio and video for the final

presentations. In addition, the resultant video can be embedded into the rest of the interface

that has been created using Macaroni.

2.5 Computing in the Kitchen, and for the Kitchen

Computers in the Kitchen When looking at the applications of computing in the home

environment, it is impossible to ignore the effects of technology and computational devices in

the kitchen. Kitchen appliances have more and more intelligence built into them, from smart

refrigerators that keep track of the food inside them [131 to microwave ovens that know when

the food inside gets cooked. Taking a different twist from the many "Houses of the Future"

in research labs, the Counter Intelligence group [12] at the Media Labs, MIT, is creating the

"Kitchen of the Future". There are various projects that look at the applicability of computers

in the kitchen and the many useful and fun ways in which they can be deployed to aid in the

activity of cooking.

A white paper [22] details the projects,
past and present at the Counter Intelligence

group at the Media Laboratory, MIT. It also

gives inspiring looks at future projects in the

field of kitchen computing, as well as some

theories and concepts in the area.

One of the projects that tackles a subject

close to Minerva is CounterActive by Ju et

al [141. CounterActive converts the kitchen

counter into an interactive cookbook, and pro-

vides instructions and pictures like a regular
Figure 2.3: CounterActive: The Counter Top cokobucaprvdmsioieancookbook, but can provide music, movies and

help on touching appropriate hot-spots on the counter. It achieves these by using a projected

display onto the table top and an array of magnetic field sensors under the table.

CounterActive is an example of a captivating way, for children and adults alike, to learn

cooking using computers. Minerva is partly inspired by CounterActive as an example of building

computing in the kitchen and creating a user-interface that is natural and unobtrusive in the home

environment. Minerva aids in deciding what to cook, and indeed, could invoke Counteractive to

teach people how to cook after they decide what to cook. Especially interesting would be the

outcome of using a totally wired kitchen, such as those described in [231, along with Minerva.

The system could then use the additional inputs from the refrigerator inventory to modify its

presentations - or the instantaneous state of various devices could affect the behavior of the

program. Indeed, Minerva has all the software components to support such a system already in

place, and it is possible to have the computer pause the cooking show and inform you that your

milk is boiling over etc.

Computing for the Kitchen Another way of looking at Minerva is as a search program for

recipes. Recipes are necessary information sources for most cooks, and have traditionally been

culled from various sources. The first printed cookbook, with a collection of recipes, was printed

in Latin circa 1474. Since then, recipes have appeared in various places and forms.

Though cookbooks and magazines (e.g. [251) are common sources of recipes, recipes are also

found in advertising pamphlets and packing boxes from various commercial establishments that

produce food or appliances and utensils for cooking. Since the advent of computers, programs

have been developed that generate customized recipes, when factors like the number of servings

required, the spiciness needed etc. are specified to the program.

Television cooking shows also started appearing in the early 1950s (e.g. cooking shows by

chef Dione Lucas) and provided cooking advice and helpful hints. The latest source for recipes,

is of course the Internet, and many online sites have lots of recipes on them, organized by cuisine,

ingredient etc.

Thus, any person needing a recipe or cooking advice has many sources that he/she can gather

them from, but the missing component is a way of directly finding the recipe that they would

like to use. Minerva aims to bridge this gap, and provide an intuitive and simple way of finding

recipes that are appropriate to the situation.

2.6 Temporal Classification of Video Sequences

Challapalli and Lippman [4] have applied the image similarity techniques described in [1] to

separating the temporal units in a video sequence. Using the similarity measures in [1], the

authors compare subsequent frames in a video sequence to identify shots and scenes in the

sequence. A shot transition is identified when the image similarity measure between successive

frames suddenly drops to a low value. A set of shots that belong to the same scene are also

hierarchically modeled. This technology has been utilized to parse the cooking videos displayed

by Minerva into individual scenes and the user can directly jump to the next scene or previous

scene in the show if he/she so desires. This extra feature while viewing the video adds to the

convenience that is necessary when the user has to interact during the process of cooking.

The steps for analyzing a video and splitting it into various shots and scenes are:

" Create feature representations for each frame image of the video, using the techniques

described in [1].

" Find the similarity measures between consecutive frames each pair of frames throughout

the video.

" Analyze these similarity measures to find troughs, where there is a low probability that the

two consecutive frames are similar.

" These points indicate shot transitions.

" Create higher level mixture models (hierarchical) based on the density functions for all the

frames in each shot. Perform the same step as above to determine scenes comprised of

many shots, but form a single temporal unit in the sequence.

The above steps depend on cutoffs for the probability that are determined by a statistical analysis

of the similarity measures found in the entire image. A research question to be solved is a generic

technique that will calculate the appropriate cutoffs that will work with different kinds of video

sequences. For example, if there is a slow dissolve or fade transition between two shots, the
image similarity measures will not have peaks or troughs. Instead, they will change smoothly
from high values to low values. Taking care of these situations currently involves testing the

video sequence a few times with different cutoffs for the shot and scene separations.

Chapter 3

System Design and Architecture

This chapter describes the overall architecture of the system, as well as the design choices (and

the rationale behind these choices) that were made while building the system.

3.1 Hardware and Programming Languages

Most of the hardware used for Minerva is standard computer equipment, but some of the functions

required non-standard hardware and software. Minerva runs on a Redhat Linux 7 system with

a 2.4.1 kernel. This system was chosen for its compatibility with the hardware to be used and

the Isis programming language.

The camera overlooking the counter is an NTSC signal output camera and is connected to

a WinTV Go card. The WinTV Go frame grabber PCI card, in conjunction with the bttv2

libraries [19] and the video4linux API[20] makes it convenient to grab still images and video

from the camera. The Isis programming language has a module that handles the video capture

and frame grabbing from the card. A Microtouch touch-screen monitor is used for the interface.

A set of utilities were also developed by the author to drive the touch-screen functions under the

Isis language.

The Isis programming language was also used to program the main control loop and the

user interface. It was chosen for its ease of use and a complete set of features that allow the

programmer to interface with all types of media input and output easily. The Macaroni module

in Isis was used extensively to create the interface. The Viper tool for responsive video was used

to create a responsive video production.

A miniSQL database [211 was used to store information about the recipes, ingredients and

user preferences. It was chosen for its simplicity, lightweight nature and complete set of functions.

The recognition engine was written with a combination of C code and Unix shell scripts. The

DAT library for storing data in an accessible way was recompiled on the linux platform to enable

the recognition engine to function properly.

3.2 Interface Design

The over-arching goal in designing the interface was to make it as unobtrusive as possible, while

retaining its functionality. This required it to have minimum interaction with the user, so that

he/she may continue with their current activity. In this case, the activity is cooking, and it is

necessary not only to let the user continue with his/her work, but also to give a smooth and

continuous presentation at the same time, that will help the user in the cooking process.

The Camera One of the functions the program required to do was to get a list of the ingredients

that the user wanted to cook with. Feasible solutions to achieve this were to use a camera to

recognize the foodstuff, or to use radio frequency ID tags (RFid) that would mark the food

containers with information about their ingredient content. The camera interface was chosen to

recognize the ingredients for three reasons. Firstly, the camera can be placed in any place without

intruding physically into the actual objects recognized. In other words, the RFid tags could not

be placed on all food stuff (fruits, for example) directly. Secondly, it was also impractical to

expect all food containers to be tagged using RFid. It is unlikely that all food sold from the

market will be kept in containers that are tagged, nor is it practical to restrict users to such

containers. Lastly, this gave us a way of exploring the ways in which the algorithm developed

by Vasconcelos et al. could be used for a new application. A camera interface is not perfect at

recognizing the ingredients, but it is so generic that it could be applied to other situations where

the user's activity must be monitored. As in the case of the gymnasium example given earlier, a
gesture recognition system could be adapted and used to extract information about the person's

exercises and display appropriate information.

The Touch-Screen Monitor The program also required a means of getting input from the
user about his/her choices, and a means of displaying the video and recipe. A touch-screen was
an ideal solution as it was both an input and output device. As an input device, it is more

suitable than voice recognition, both due its robustness, and also the fact that voice can get

blanked out when the video is playing. Of course, the traditional mouse/keyboard interface is

too cumbersome and intimidating for the kitchen environment. The particular touch-screen that

was obtained also had a special shield that enabled it to function even when there was a small

amount of dirt on its sensing surface. This, though only a small additional feature to a monitor,

is significant because it is a very likely situation that people have stuff on their fingers while

cooking.

Minerva Screens Individual screens are displayed to the user at each stage of the Minerva

interaction. Details and images of these screens are provided in the implementation section of

this document. The interface was divided into screens for many reasons. Firstly, on a conceptual

level, they break up the task model of the computer into its separate stages very easily and it

is possible to know what routine the system is executing at every screen. Secondly, new screens

can be added or deleted very easily. Every new screen would have to describe:

" The components (buttons, images, videos) that belong to that screen.

" The routines to create the above components.

" The actions that should be taken when a certain component is touched.

" The transitions to the other screens that can be changed to, from the current screen.

This structure allows for simplicity of the programming of new screens, and to understand the

behavior of current screens. For example, after production of the Viper video (refer implementa-

tion section), a screen had to be added to display this Viper video, since it had different display

techniques than a normal video. The above architecture made it really easy to add this screen

without changing any of the code for the other screens, except at the transitions between the

screens. More details of the transitions between the screens are discussed in the implementation

section.

Functionality Along with the design of the screens, it was also necessary to take into account

the features and functionality that had to be available in the final interface, so that the user

could continue with his activity and still get useful information from the Minerva system. This

gave rise to some features that were included in Minerva for ease-of-use and applicability. They

are

* The initial movie: The initial screen, after choosing one's profile, simulates a television

screen, and can indeed be used to display live television if appropriately setup. This design

was chosen as making the system operate on the television would not only give it the

added functionality of television, but would make it more approachable and easier to use.

The usual reactions that humans have towards a computing interface will be replaced by
a more natural approach to television, due to higher familiarity, at least in a majority of

the population.

e The real-time display of the video capture screen: This was necessary for giving a clear

feedback to the user about what was visible to the computer and what it would see.

Feedback from the computer to the user is a necessary component of any good user interface,
especially if it is designed to be easy to use.

e The design of the cooking show screen: This screen has a lot of functionality that was

deliberately included to make the system usable in the kitchen environment. Firstly, the

user may not be interested in watching an entire cooking show to prepare a recipe, especially

if he/she is an expert cook. Thus, an image of the text version of the recipe is also shown

so that he/she may look at it and continue with their cooking. Similarly, stop and pause

buttons are offered to the user. This would be very useful for the user to keep doing their

activity, and watching snippets of the video as they feel. Lastly, the buttons to jump

directly to the previous or next scene - super rewind and super fast-forward buttons in

a way - will make the user have the choice of skipping a scene that he/she has already

done the cooking for, is not interested in, or has already seen. Similarly, they could jump

back to the beginning of a scene that they might want to watch again. More details of the

buttons and their functionality is described in the following sections.

3.3 Back-end Design

The Minerva back-end software consists of various components tied together by the control

module. The design criteria for the components follows.

Database It was necessary at the outset that Minerva, to be a successful system, had to be
able to handle thousands of ingredients and recipes to be successful. Ideally, the information

about the recipes would be culled from various sources on the Internet. Such a system is not

currently in place, though some researchers, including some at the Counter Intelligence group at
the Media Labs, MIT, are working towards creating large databases of food and food history.

Minerva, given this lack of a complete database, was to be able to handle its own database

that had to be scalable. Thus, a robust, but lightweight system for storing the recipes and the

ingredients that went into them was required. The MiniSQL system was chosen and installed as

it satisfied these criteria while having a complete SQL vocabulary for the required operations,

and simple usage rules. The miniSQL program also had a C programming language interface to

the server. Thus, C routines could be written for specific queries and then encapsulated into Isis

functions that were called by main program in Minerva.

The MiniSQL database was also used for storing the user preference data. Thus a central

system was used for retrieving any information about the user necessary for controlling the

behavior of the program. The information in the database was stored in the forms of tables

pertaining to user and recipe information. These tables formed a relational database, that were

cross-linked. So, multiple tables could be accessed and their keys compared to gather relevant

information.

Object Recognition Module Once the decision was made that the ingredients were to be

recognized using a camera, and that the system created by Vasconcelos et al. would be used to

achieve this, a good training and retrieval system had to be developed for the ingredients. The

training system was designed to be as simple to use as possible, for future additions to the project.

To this end, shell scripts encapsulating the training process were written and documented. The

training process involves the following stages:

" Collection of images of food ingredient to be trained.

" Splitting the images into separate food items.

" Creating Gaussian density mixtures of the split images.

" Combining all the density mixtures into a Hierarchical Gaussian Mixture, that represents

the entire ingredient to be trained.

The recognition process consists of the following stages:

" Take a snapshot of the ingredients to be recognized.

" Split the images into separate items.

" Create Gaussian density mixtures of each item.

" Compare the density mixture of each item to each of the trained ingredients and find the

closest matches. This returns the set of ingredients that are identified to be on the counter.

These steps were implemented in C code, and shell scripts that stepped through the entire process

were interfaced with Isis, so that they could be integrated with the main control module.

Object Separation When multiple ingredients are placed on the table, they have to be anal-
ysed independently by the object recognition algorithm. Thus, one must first separate the objects
into multiple images and analyse each one separately. This separation algorithm was written in
C, and is called by an Isis wrapper around the program. The algorithm works by scanning the
image from the left to right and top to bottom. During the scan, it compares the image to an
image of the table top when it is blank (taken during the initial setup of the system). When-
ever an object is encountered (the color values are different from those of the background), it
recursively goes through the object identifying its boundaries.

This recursive technique is similar to the

fast floodfill algorithm described in {18]. Once

the object boundary is identified, it is extracted

and copied into a new image. Thus, the im-

age with multiple ingredients is broken into

individual images with one image each. One

drawback of this algorithm is that shadows,
objects very close to each other, or dirt on

the counter cause multiple objects to be joined

into one. The above image describes the work-

ing of the algorithm, as well as shows the

drawback described above causing two toma-

Figure 3.1: Object Separation toes to be grouped into one image.

3.4 Control Flow

This section describes the overall architecture and control flow in the Minerva system. Figure

3.2 shows the interactions between the main control process, the modules and the interface.

The control flow in a typical use of Minerva happens in the following steps:

" The control module (CM) displays the initialization screens (displaying a profile choice

screen and then a movie screen in the current implementation), waiting to go into the

video capture screen.

" When the user chooses to look at the counter camera, the CM invokes the video capture

process, changes to the Minerva camera screen and continually updates the screen with the

snapshot of the counter top.

Figure 3.2: Control flow and Architecture of the Minerva System

Minerva System Architecture

Modules

Object Recognition
Module iLoo ngrApI

Database LookupFModuleer

Interface (Screens)

Control S*"u "*i
Process

SCree State
Varidbles

User

ecipe &%nigredie
Matches

Video
Loctiei

Corte Minerva Comra

0Screen
Voge

t dcipe Reci pe Choice
List:11!4 Screen

Video and Recipe
Display Screen

* When the user places the ingredients on the table, he/she touches a button on the

the signal for the recognition phase.

screen, giving

* The CM receives a snapshot of the counter from the video capture module and passes this image

to the object recognition module. This module performs the object recognition phase and returns

the names of the ingredients identified.

a The CM passes the names of the ingredients and the user name from the previous phase to

a database look-up program that finds the best matching recipe for a given set of ingredients

and the user's preferences. It achieves this by retrieving the user's preferences, and searching

for these preferences and the ingredients on the table together among all the recipes, assigning

weights for each factor that matches. The highest-weight matching recipe is then selected. In

this implementation, the top three matches are returned.

" Given the recipe names and the location of the videos, the CM changes the screen to let the user

choose one of the matching recipes.

" After this choice, the video of the selected recipe and its corresponding textual version are

displayed on the screen.

The control module also handles all the interactions on pressing the other buttons on the screen.

Thus, in the section for a particular screen in the control module, the actions to be performed

when each button (like forward/rewind/next scene etc) is pressed are specified in that section.

Jumping Across Scenes Other than the normal functions of play, pause, stop, rewind and

fast-forward, Minerva also implements two extra functions while the video is playing. These

allow the user to directly jump to the next scene or the previous scene. In the case of normal

videos, this is achieved by first processing the videos using the technique mentioned in [4]. This

outputs a list of frame numbers at which the scene transitions occur. The control module then

uses these frame numbers to jump to the next scene or previous scene when the corresponding

buttons are touched. In the case of Viper videos, since the video is already sequenced from

smaller clips, the position of each clip is known and the buttons are used in the same way to

jump between them.

Chapter 4

System Implementation

4.1 Running Minerva

The following screens step through the execution of the current implementation of Minerva.

Figure 4.1: Profile Choice Screen

The opening screen contains the names of the users whose profiles have been stored in the

database. Currently, this format for display looks good under the assumption that there are

a small number (4-6) people in the household who use the system. For accommodating more

people, a different form of display that is more scalable may be desired. Once the user chooses

the operating profile by touching one of the names, the name of the user is stored, and this will

be used as the reference point for all database look-ups on the user's preference.

The program moves to the second screen, where a movie is displayed. The second screen is

designed to simulate the experience of the now ubiquitous kitchen television. A favorite channel

for each user is stored in the system, and this channel is initially started. Currently, the channels

played are movies stored on the network, but they could be adapted to play live streaming

video. Buttons for starting and stopping the video, as well as changing channels are provided.

The movies are played using Isis movie objects, that are converted to Macaroni objects, which

are rendered on the screen. The channel changing buttons, designated by a "+" and a "-" are

implemented by circularly stepping through a list of filenames that represent the list of channels.

If the channels are video played over the network, the filenames simply have to be changed to

URIs (Uniform Resource Identifiers).

Figure 4.2: Initial Movie Screen

The "Minerva" button on the corner allows the user to go into the video capture screen, to

start the recognition. This enters the main section of the Minerva system. Once the Minerva

button is touched, the program initiates video capture from the camera and displays the image

of the counter on the screen. The user can then place the ingredients he/she would like to use

under the camera, make sure that they are seen by the camera by comparing with the image

displayed on the monitor, and press the "GO" button. This causes a snapshot of the counter

to be taken and passed to the recognition module. The recognition module returns a list of

ingredients matched. Then, a database look-up based on (a) these ingredients and (b) the profile

chosen during the first screen, returns a list of recipes. This list is ordered according the weights

they received during the database query - the weight depending upon the importance of the

ingredients in the recipe and how well the recipe matches the user's preferences.

Figure 4.3: Counter Camera Screen

The implementation of each of the above steps follows:

" Video Capture: The video capture is done using the utilities in Isis. The routines used

allow getting image snapshots from a frame grabber card that is supported. Currently,
cards based on the Brooktree (bt8x8) chipset are supported, and are used along with the

Video4Linux 2 API [20]. Frames are read continuously from the card as images, converted

to Macaroni objects and rendered on the screen. Thus, the user can make sure that the

ingredients are placed in a way so that they are visible to the camera.

" Recognition Module: When the "GO" button is pressed, the main program takes the latest

image from the camera, and reduces its size by half. This is done using the image processing

library in Isis. After this, the image separation technique described earlier is used to split

the ingredients into individual images. For each of these images, a Minerva module performs

the recognition and returns a list of ingredients. The recognition takes place by starting

with conversion of the image into feature space. This creates .LIB files with the feature

density representation of the image. This is then compared to the hierarchical feature

models created for each trained ingredient. This returns a list of probabilities of the query

image being similar to each of the ingredients. This list is sorted and the top ingredient is

accepted as the match. The name of this ingredient is written out into a file by the invoked

shell script that does all the recognition steps (queryHierImage). The Isis function waits

for the recognition to get over, and reads the file to know the name of the ingredient.

* The next step involves getting a list of three recipes that match this ingredient. This is

done by invoking a database query program written using the C interface to the miniSQL

server. The basic steps for the query are given below. Details about references to msql

tables can be found in section 4.4.

1. Open connection to msql server.

2. Perform query to get all the preferences of the user whose name is stored in the profile.

This is obtained from the userpreferences table.

3. Perform query on recipes table and retrieve all the recipe IDs.

4. For each recipe R,

(a) For each ingredient recognized, I

i. If recipe R, contains ingredient Ij, add that ingredient's weight in the recipe

to the total weight for that recipe Wi. This information is obtained using a

query on the ingredients table.

(b) For each user preference, Uk

i. If recipe R, contains user preference Uk, add prefWT to the total weight

for that recipe Wi (prefWT is previously set to an appropriate value that is

suitable for most recipes). This is obtained using the recipe_ categories table.

5. Find the top three weights amongst all Rj, by sorting and choosing the first three.

6. For each of these three recipes, perform query to find their matching video file names,
and expanded recipe names from the recipes table.

7. Write these out to a specific filename.

e In the next step, the Isis program reads the file written by the query step and changes to
the next screen.

Figure 4.4: Recipe Choice Screen

The screen shows the list of the top three recipes, the chosen one being displayed with a green

symbol. The "ADD" and "CLEAR" buttons allow the user to add more ingredients to the query

or clear the list of ingredients shown to the system. This will return the user to the previous video

capture screen. If the user chose the "ADD" button, the already recognized set of ingredients

will be retained, and if the "CLEAR" button was pressed, the list will be made empty. The

next set of ingredients recognized will therefore add to the list, or make a new set of ingredients,
respectively.

On choosing a particular recipe, an image of the final version of the dish is displayed in one

section of the screen. This is possible, since each recipe has an image associated with it, just like

it has a video associated with it. Once the user chooses the dish he/she would like to make, the

"PLAY" button causes a change to the next screen. If the movie is a Viper movie, more options

are shown, and this is explained in section 4.5.

Lj AYPLJ CLEAR

Figure 4.5: Cooking Show Screen

In this screen, a recipe is shown for the chosen dish on the left side. This recipe is shown

from an image associated with it. On the right, a video of a cooking show for that dish is played

on the right. Controls for the video include play, pause and stop, as well as buttons to jump

directly to the previous scene and the next. The "BACK" button takes the user back to the recipe

choice screen. The play, pause and stop functionalities are implemented using timers, which are

provided in an Isis library. When the pause button is pressed, a timer value is saved, and when

the pause button is pressed again, the timer is reset to the saved value. This timer is directly

linked to the playing of the video, because the frame of the video displayed is computed from the

timer value. The stop and play buttons are implemented in a similar fashion. The forward-scene

and backward-scene buttons are implemented differently for Viper movies and normal movies.

For normal movies, the algorithm described in [4] is initially run on the video files. This

generates a new file with a list of frame numbers at which the shot changes happen. This file

is read and stored during running Minerva. When one of these buttons is pressed, the current

frame is compared to the list of frames to find that frame that is immediately before or after it.

The video is then changed to that frame. The timer that controls the play of the movie is also

correspondingly adjusted for the change in frame numbers.

For Viper movies, the sequence of clips that make up the presentation can be accessed from

inside the program. Along with this sequence information, the start frame of each clip is available,
and from this information, one can directly jump to the previous or next clip in the sequence.

4.2 Interface Screens

As mentioned in the system design and seen above in the execution, the display is organized into

screens that have specific functionalities. Each screen has a set of transitions to other screens,
and actions to be performed when buttons are pressed. The organization of the screens in the

implementation is shown below. The arrows indicate the transitions that occur between the

screens, as well as the buttons that trigger these transition events.

Figure 4.6: Minerva Screen Transitions

"NAME~k

EX=IT yi
2.Television Screen

EX inerva

ADD
C EAR -

4.3 Recognition Module

The recognition module consists of two stages, training and identification. Both of these are

based on the Gaussian mixture models, developed in [1].

Ingredient Training The training sequence was encapsulated into a Unix shell script. The

system designer starts up the script and shows ten to fifteen versions of the ingredient to be

1. Login Screen

3. Query Screen4. Recipe Screen

PLA V BACK

5. Playback Screen

trained, pressing space when the ingredient is under the camera. An Isis function interfaces with

the video capture from the camera and stores single pictures of the images. Another shell script

creates mixture models of these images and stores them in a separate directory, along with an

index of all the images pertaining to this specific ingredient.

Figure 4.7: Creating mixture models for the training images

Itvnere/Ingredierds Mnerva/Database
/bnatoes /Irdex

brnatol.pg 1 Mner/Ingredierts/bmatoi
brnato2.pg 2 Mner/Irgredierts/lbmato2

/cucuters 11 Mnerva/Ingredients/cumunber1
ctumber1.pg 12IMnrve/Ingredients/coumber2
coumber2.pg

21 /Mvner/Ingredients/beef1
fbeef 22 Mnerm/Ingredients/beef2

beeft.pg
beel2.g

A shell script is then called that combines all these files, to create a common index of all the

mixture models. Thus, when a query image is obtained, its mixture model is compared with the

mixture models of each image of each ingredient and the ingredient of best matching image is

returned.

An alternative to the above approach is to combine all the mixture models of an ingredient

into a single hierarchical mixture. This creates an index file that has only one entry for each

ingredient. When the query image is received, its mixture model is compared to the hierarchical

model of each ingredient and the matching ingredient is returned. Both the above techniques

were tried, and the intuition that the hierarchical technique is more robust was backed up by

results from tests (given in the evaluation section).

Figure 4.8: Creating hierarchical mixture models for the training images

A complete description of the shell scripts created for use by Minerva follows:

" mkMMs: This creates mixture models for a set of jpg images - it creates .lib directories

with the mixtures of each image.

" mkImageDB: This collects the mixtures of a set of images and stores them in a single

database directory, in the form of .LIB directories. It also creates an Index file which has

a list of all the images whose mixture models have been stored in the database.

" MkLibldx: This is a small script that creates the Index file for the database. It is invoked

by mkImageDB.

" mkHierMMs: This creates a hierarchical mixture model for the images. It first calls mkIm-

ageDB to create the database and then runs "hem", a C program on the databases to create

hierarchical models of all the images in each database.

" mkHierImageDB: After hierarchical models are made which combine the models for all the

images in each database, this script collects all these into a single database and creates a

corresponding index file.

* mkHierImageDB: This is a helper script to create the index file. It is invoked by mkHier-

ImageDB.

* queryImage: This script finds the similarity measures and returns the best match for a

given image and a given training image database.

" queryHierImage: This script has the same function as the one above, but uses hierarchical

mixture models for the query.

Minerva uses hierarchical mixture models during its operation. Thus, the training stage consists

of calling "mkMMs <imgdir 1> <imgdir 2> ..." on all the training images captured, where

each ingredient has all its images in one directory. . This is followed by running "mkHierMMs

<imagedir 1> <imagedir 2> ..." on each of the above directories. Lastly, mkHierlmageDB

creates the training image database and index file. The query stage is simply done using a call

to "queryHierImage <queryimage> <training image DB> <results file>".

The relations between the various shell scripts is indicated in the following diagram. The

left branch indicates non-hierarchical techniques while the right branch gives methods that use

hierarchical mixture models. It may be noticed that the mkHierMMs script (in the right branch)

all invokes mkImageDB (in the left branch) during its operation.

4.9: Relationships between the various shell scripts

4.4 Database Tables

The database consists of information about the users and their preferences, as well as about the

recipes, ingredients, the relative weight of each ingredient in a recipe etc. The format of the

tables is given below:

user info table:

userID login first-name lastname age Iexperience

lint [char] [char] [char] [int] [int 1-5]
2 shyam Shyam Krishnamoorthy 23 3

The category field from the user preferences table is retrieved to control what recipes are
fetched for a given set of ingredients.

Captured Training
Images

Split Images into

Separate Objects

Legend:

Dotted Lines Training Steps
Solid Lines Invocation Links
Numbers : Order of invocation

Shell scripts for the recognition engine and their interactions

user preferences table:

userID category

[int] [char]

2 vegetarian

The next set of tables involve the recipes and the categories they fall into. When retrieving

recipes based on a given set of ingredients, the importance of those ingredients in each recipe is

taken into account in addition to the match between the categories of the recipe and the preferred

categories for the user.

recipes table:

recipelD episodeID

[int] [int]

1 2

recipe-name

[char]

Mamas Macaroni

file

[c
mac

name

har]

cheese

recipetype

[char]

Null
t

ingredient count

[int]

6

reciDe categories table:

recipeID category

ingredients table:

recipelD ingredient

[int] [char]

1 macaroni

ingredient_wt

[int 1-101
10

2
difficulty

[int 1-5]
1

I
I

,

The last two tables pertain to information about the videos that might be useful for cataloging

and searching purposes.

shows table:

showID I show name chef

[int] [char]

1 Emeril Live

[char]

Emeril Lagasse

episodes table:

episodeID showID episodedate episode_title notes

[int] [int] [date] [char] [char]

1 1 4-Feb-2001 Emeril's Restaurant, Orlando Null

4.5 Use of Isis and Viper

The main control module is written in the Isis programming language, and all the externally

called C programs (object recognition, database look-up etc.) have corresponding Isis wrapper

functions that can be used. Also, since there were problems with the linux touch-screen drivers

for the Microtouch monitor, Isis driver routines were written that directly communicated with

the Microtouch hardware. These routines include resetting the monitor, waiting for a touch,
waiting for a liftoff, and returning the X, Y coordinates of the position touched on the monitor.

Macaroni, an Isis library for handling complex two-dimensional compositions of images, video

and geometric shapes was used extensively for the interface. The library includes support for
rendering images, video, lines, polygons etc. in real-time.

Viper Cooking Video Production A special cooking show, on Thai Mango Curry, was

filmed for Minerva. It was a production that highlighted the ability of Viper to handle multiple

versions of the same show, and Minerva using this ability effectively to tailor the presentation

based on each user's culinary preferences. The same dish was constructed in three different ways.

The first was a vegetarian version using tofu, the second was a seafood version using shrimp and

the last was a meat version using chicken. The Viper system was embedded into Minerva and

if the user chose to see that show, extra factors like length, humor, information level could be

set by the user, while the factor affecting the ingredient used would be extracted from the user's

profile. Thus, the user had a cooking show that was made to his/her choice. The following screen

shows the choices (on the right) that are offered to the user when the user chooses to see that

program. In addition, the vegetarian or seafood version would be played to the user according

to his/her profile information.

Figure 4.10: Viper Production with Choices for User

The factors that affect the organization of the movie are:

" Food style preference (vegetarian/seafood/French etc.)

" Length of movie

" Cooking Essentials

" Humor

" Additional useful information, such as health tips, food history etc.

Based on these factors, the clips were annotated with the following keywords and scales:

e time: This was used to organize the clips chronologically (a scale from 0 to 10000).

* importance: Important clips were those that were essential to the show and would be

included in a short version. The unimportant clips would be dropped in the short version,

but included in the long version (a scale from 1 to 10).

LCFARADD

" common: Those clips that were marked common were common to all three variations of

the dish.

" food-Style: This keyword marked those clips that belonged to only one of the variations

(e.g. tofu specific clips or shrimp specific clips).

" main-show: These marked the clips that showed the essentials of cooking the dish.

" humor: Annotation for humorous clips.

" information: Clips that have extra information.

Editing guidelines were then written in the Isis language, which are processed by the Viper

subroutines when a new presentation has to be generated using a given set of values for the

parameters. The following rules were coded into the editing guidelines:

" The set of clips is split into those that are common, and those that are specific to each

variation in food style. Only those clips that match the food-styles in the user's preference

are taken into account.

" From the common clips, a smaller list of clips is obtained, by choosing only those that

have a matching annotation with the user's choices from humor, information and cooking

essentials (main-show keyword).

" The above process is repeated for the clips that show a variation in food-style.

" These two shortened lists are then merged into one large list of clips.

" From this merged list, another list is made using the "importance" keyword. If a long movie
is requested, all clips are chosen, but only those with the "importance" scale higher than

five (out of a maximum ten) are selected if a short movie is requested.

e This list of clips is then sorted according to the "time" scale to order it chronologically.

" This final set of clips is sequenced to form a movie. Currently, no effects like fades and
dissolves are used, but Viper provides functionality for such features.

These steps (editing rules) were implemented in Isis using special Viper functions, which allow

the content creator to selectively choose clips with certain types of annotations etc.

Figure 4.11: Affector Tool for viewing behavior

The diagram shows the use of a Viper tool called Affector, made for checking the behavior

of a production. It is used to choose values for the factors. Another tool, called Viewmovie (in

the next diagram) shows the sequencing of the clips on the time line for that particular set of

values that the factors take. The red segments are video clips and the blue segments correspond

to audio clips. Another tool, Playmovie, can be used to view the final production for a given set

of factor values. The entire production consisted of 43 clips, with more than an hour of video

footage.

Figure 4.12: Viewmovie tool for viewing sequencing of Viper productions

Chapter 5

Evaluation

5.1 The system and its components

The system was implemented successfully, and tests were performed to analyse the various factors

that affected its performance. One factor that varied, and could have been improved upon, was

the success of recognition of the ingredients. Using the techniques involved, there were eight

different options during implementation of the recognition engine. These eight options arose due

to three factors that could be varied during the training implementation, each factor having two

possible states. They are:

1. Matching to individual image mixture models vs. Matching to hierarchical mixture models

Matching to individual image mixture models may be more accurate if the training set

captures all positions, forms and orientations of the ingredient, but would take longer

computationally than a combined hierarchical.

2. Training on complete images from the camera vs. Training on cropped images of the ingre-

dient, extracted from the background using the separation technique mentioned in Section

3.3.

Complete images would add unnecessary noise to the density mixtures, while cropped im-

ages suffer the disadvantages of arbitrary sizes. Also, the object separation is not robust

when shadows come into play, and this could cause problems during the matching stage.

3. Training on full-sized images vs. Training on half-sized images.

Training on full-sized images would seem more accurate, but computationally intensive.

Surprisingly though, the results in table 5.1 indicate that halving the size of the images,

not only speeds up the identification phase, but also gives better recognition. This behavior

can be attributed to the loss of specular (shiny spots from lighting etc) and textural noise

(from the mottled background of the table top) from smaller images, while retaining the

essential shape and texture of the ingredients themselves. Indeed, there is an optimum size

at which this is effective and any attempts to perform the matching at image resolutions

less than 160x120 turned out to give arbitrary results, and consistent recognition rates were

not observed.

Table 5.1: Choosing the right recognition technique

We see from the table, that half-size images were better for recognition, due to the factors

mentioned above. Also, hierarchical images performed as well or better than individual images,
and their use is also justified because they are more scalable and less computationally expensive.

Cropped images yielded better accuracy than full images, as predicted. Thus, the final system

was trained using hierarchical models from half-sized images, with ingredients cropped from
the background, and the same process was used to do the matching. The final system had

approximately 80% accuracy, as long as lighting conditions were constant and different ingredients

were kept sufficiently distant from each other, so that one would not cast a shadow on, or merge

into the image of, the other.

Inconsistencies in recognition were observed when items of the same ingredient that looked

sufficiently different from the training images were used, or when there were notable changes in

lighting. Some of the future work should be aimed at training the system with a wide collection

Database Type Accuracy

Full sized images: 320x240
Individual Images 33%
Hierarchical Images 33%
Ingredient-split Images 52%
Hierarchical Ingredient-split Images 52%

Half sized images: 160x120
Individual Images 71%
Hierarchical Images 79%
Ingredient-split Images 79%
Hierarchical Ingredient-split Images 79%

of ingredients, and many versions of the same ingredient. This would allow the hierarchical

models to capture the essential aspect of each ingredient, and make the system more robust to

changes in appearance and lighting.

The processor time taken for computing the mixture models and performing the matching

was also computed for full-size and half-size images. The computation time for full-size images

was 28 seconds and that for half-size images was approximately 7 seconds. This reduction can be

explained as the area decreases by a factor of four, causing a speed-up by an equivalent amount.

In addition, it was necessary to return results within a few seconds after the user queries on an

ingredient, and seven seconds was not acceptable. As mentioned in [1], the image is analyzed in

blocks of 8 pixels by 8 pixels, with an overlap of 4 pixels in each step. By removing this overlap,
a fourfold increase in speed was achieved. The overlap causes each pixel to be analyzed four

times. a good feature for increasing the accuracy of matching, but given the requirements of

responsiveness, a trade-off had to be achieved. The final search times were less than two seconds,
and did not show significant drops in recognition accuracy.

5.2 Qualitative Survey

An evaluation of the system was performed by providing eleven users with a questionnaire. The

questionnaire had four sections, with four to five questions in each section. The respondents

included people from ages ranging from twenty to fifty, both male and female, with varying

cooking abilities and interest in computers. Six respondents were asked to answer the questions

before seeing the system, while five others were asked the same set of questions after looking at

Minerva. The questionnaire, and answers to it, are included in appendix A.

Statistical Significance Due the small number of respondents to the data, a complete sta-

tistical analysis of the evaluation is not feasible. On the other hand, some minimum analysis of

the data could be done, including testing the responses for statistical significance (which yields

the confidence levels for making inferences from the responses).

When collecting data about a particular observation, we would like to know the trustwor-

thiness of the data. Statistical significance approaches to calculate this trustworthiness work by

assuming an initial hypothesis, called the "null hypothesis" to be true. The observed data is then

analyzed, and if its calculated probability is seen to be below a certain cutoff probability, the

null hypothesis is rejected, and an alternative hypothesis is accepted. The cutoff probability is

chosen so that the chance of making both Type I errors (rejecting the null hypothesis when it is

actually true) and Type II errors (accepting the null hypothesis when it is actually false) is low.

This is a trade-off since the probability of Type I errors and Type II errors are inversely related.

In the questions that we have chosen for this evaluation, there is no prior information that

we know to decide a special hypothesis about the responses. Therefore, the null hypothesis is

taken as the data being uniformly distributed (random). If we find that the probability of the

results for a question are very low (below a cutoff), we reject this hypothesis, and say that the

data is non-random, or statistically significant. In fact, we would prefer that the null hypothesis

be rejected, as this would mean a high chance for the data to have some meaning or pattern,

rather than just being random. In this questionnaire, instead of choosing a cutoff, we will simply

give values for (1-p), where p is the probability of that response, as the statistical significance

of that result. This technique is commonly used to provide a rough estimate of the relevance of

the data. More information about these testing techniques is provided in [29]. Appendix A also

includes values for the statistical significance values calculated for all the responses. In addition

to this, comparative analysis between different test groups can be used to make inferences.

The following are simple inferences that can be made from the questionnaire, in spite of the

limitations due to the low number of sample responses. The responses that have a statistical

significance of more than 90% are used to make inferences while those above 80% are used to

identify possible trends that could be tested with further evaluations. The results from the

questionnaires indicate the following:

" Overall impressions: In general, most users were satisfied with the system. Those who

had seen the system were enthusiastic about its applications, and said they would use it

regularly (5) or on and off (6). Users who had not seen the system liked the idea of it from

the description. A majority believed it would widen their options, be useful in giving them

health information, and that they would like the suggestions. Also, people had a positive

view of the interface and its uniqueness, but the low confidence level in these responses

restricts us from making further inferences from the data. One respondent, however, said

that they would prefer hyperlinks in the recipe, even if it would make it look more like a

traditional computer system.

" A fair number of users (5/11) responded that they would like to use such a system "regu-

larly". while the rest (6/11) said they would use it "on and off". There were no users who

responded that they would "never" use the system. Minerva, as an entire system, therefore

achieves its goals of creating a useful and unobtrusive cooking assistant and recipe retrieval

system to a fair degree. It is interesting to note that two of the respondents who would

NOW

not use it regularly also said that they were "critical" about the applicability of computers

in the home environment. One reason for people being wary of computers could be due to

their inherent distrust which was likely created by prior experience with similar applica-

tions, but any concrete inferences have to be backed up by further surveys and evaluations.

It would indeed be useful, in a future version of Minerva, to make it more comfortable to

use without being obtrusive, in an effort to address these possible biases.

" Opinion over the health information portrayed by Minerva, and whether the health content

of certain recipes should affect Minerva's behavior was divided, but as one respondent

mentioned, "Information should always be displayed, but control over the action to be

taken regarding this information should be with the user". The task to be addressed, in

this scenario, is to give users control without destroying their involvement in the actual

activity that they are involved in.

" A majority of the respondents (10/11) believed that suggestions from the computer on

what to cook, would widen the set of choices that they could make. This is heartening,

and indicates that suggestions are welcome, but their relevance to the situation is im-

portant. Increasing the accuracy of recognition would definitely increase the relevance of

the suggestions, and work could be done towards taking the nature of the objects to be

recognized to tailor the recognition algorithm.

" A few respondents mentioned that they would prefer a speech interface over a touch-screen

interface. This is indeed a viable alternative, and frees the user's hands to continue with

their activity (cooking in this case). Before exploring this option however, techniques for

discriminating between the user's voice commands and background noise must be perfected,

as well as making sure that the sound is not masked out by the audio from the cooking

show or television program being presented.

The 'Student's T-test is a statistical test [261 for judging the significance of the difference in

means between two sets of sample data. Even though the number of samples was not large enough

to render the analysis complete, the results from the test can be used to reinforce inferences

made using other techniques. When the test is applied to data from two different samples, along

with a hypothesis that is made about the relation between the populations represented by the

two different samples, it yields a number for the probability that the hypothesis is an accurate

description of the population.

The test was used to get a confidence level for the hypothesis that people who saw the system

liked the idea of the system more and were enthusiastic about such applications than those who

didn't. If this hypothesis is true, it would give an indication that seeing the system had a positive

impact on its users.

The test was done in the following stages:

" A subset of the evaluation questions was chosen for analysis. This set was based on the

questions that reflected the respondents view of the advantages and friendliness of the

Minerva system and its interface.

" For each of these questions, numbers were assigned to each of the options in the answers.

These numbers were designed so that responses that indicated that the users liked the

system and had a positive view of it, had higher values.

" The responses were split into two parts - responses from those who had seen the system

and from those who hadn't. For each of these sets of responses, the answers to the questions

were analyzed, and the numbers that weighted each option were summed up. Thus, for

each respondent, one number was be obtained that indicated how much the user liked

the system. On comparing these values between the people who had seen the system, and

those who hadn't, one could get an estimate of whether seeing the system increased a user's

appreciation of the interface and its goals.

" Once these numbers (indicated as "goodness values" in the table) are obtained, the mean

and variance of the two sets are calculated. The t-value (as defined in the T-test) is then

calculated using the equation shown in the figure.

Once the t-value is obtained, a probability value, representing the confidence level in the

hypothesis can be looked up in standard statistical tables using this t-value. A table look-

up script [27] was used to calculate the values shown in the table. Values for sample set

A correspond to the group that had not seen the system, and set B to the group that had

seen it.

Figure 5.1: The 't' Statistic

kA ~~EB

s2/ng +sB/nl

where xAand XB are the sample

means of A and B, s2and sB are

the sample variances of A and B,

and nA and nB are the sample

sizes of A and B.

Parameter Sample set A Sample set B

"Goodness Values" from each questionnaire

Respondent 1 6.0 7.5

Respondent 2 6.5 7.5
Respondent 3 7.75 9.5
Respondent 4 5.5 8.0

Respondent 5 5.5 5.5

Respondent 6 5.0 -

Mean 6.042 7.600

Variance (square of the 1.64 0.8

standard deviation)

Number of responses 6 5

From the above values, the t-value was obtained to be 2.295 and the p-value corresponding

to this was 0.0276. This indicates that we can believe our hypothesis that viewing the system
increases a user's positive view of its usefulness and applicability with a confidence level of
97.24%. This is enough to what would traditionally be qualified statistically significant (95%)
and re-inforces the views from the evaluations that Minerva was well-received by users, and that
their view of its usefulness and usability increased after watching it in action.

Further evaluations A key feature in systems that address usability issues is, as seen above,

the evaluation of its usage, features and interface. The following steps could be taken to further

improve the relevance of the feedback obtained about Minerva, and use it to enhance the system.

9 More samples: There is a definite need to have a larger set of evaluations so that accurate

and useful inferences can be drawn from the data. While overall trends are hinted at, when

using small samples, they may not be representative of the whole population. It is also

necessary to have a diverse set of people to answer the questions - diversity in terms of

age, gender, likes and dislikes, profession, nationality and culture etc.

e Better Questions: Designing questionnaires is a difficult task and requires keen insights

into the type of questions that can result in useful responses - especially necessary are

those that can discriminate the trends in the population and can be useful in analyzing

correlations between the different topics. For example, a well-designed questionnaire will

not only be able to extract information about the likes and dislikes of the users, but also

how their preferences are dependent on other factors like location, age etc.

9 Better Techniques: Sensible and clever techniques for analyzing the data can result in

good inferences that may not be initially apparent. The responses must also be tested for

significance and reliability using proper statistical techniques (split-halves method etc.).

Chapter 6

Conclusions and Future Work

6.1 Lessons Learned

While creating and using the Minerva system, there are a lot of instructive points about user

interfaces and system design that can be noted. The importance of user control over his/her

information, preferences and system behavior is very high, and a trade-off must be achieved

between how much control is given to the users and how much is gleaned from their actions.

Indeed, a system that gathers all information required for its functions from the user's actions

would be totally easy to use, but at the same time, it would cause the user to suspect issues of

control and privacy of information, and he/she could also be annoyed if unwarranted suggestions

are brought up.

It is also necessary for a system to communicate effectively between the modules, while

retaining the ability to use multiple techniques for doing the same step. This is achieved by
establishing a set of protocols for communication between the modules. In the case of Minerva,
all processes that are invoked by the Isis module write their output to a disk file that is later

read by the parent process. Thus, if a new recognition engine based on a different technology is

desired, the only requirements would be that it accepts an image input from a file, and returns
the ingredient output to a file.

Extensibility of a system depends upon proper modular design of the internals. As mentioned

earlier, since the display in Minerva was split into multiple screens that executed transitions

between them when a specific action occurs, it was very easy to add new screens or remove

them. Indeed, the screen to display Viper movies was added at the very end, but made to look

exactly like a screen displaying a normal movie. Once the functionality of all the buttons was

written down and the transitions were set, the system is ready to use the new screen.

Finally, the importance of context-awareness of a system is noticed only when people actually

use the system. Thus, each small feature, like ordering the recipes in order of preference, choosing

movies based on the preference, and even changing the presentation based on the user preference,

contributes to the entire feel of the system. Users are more willing to use the system, and feel

that the information is relevant to them when this is done. The qualitative evaluations are thus

an important part of the iterative system design process.

6.2 Drawbacks

The Minerva system was evidently not perfect, and suffered a few drawbacks. They have been

outlined below:

" The recognition system was not perfect, and a better system should be plugged in if Minerva

is to be deployed for use in a kitchen. On the other hand, using the current system helped

us understand the varying applications to which the image similarity functions in [11 could

be applied.

" The touch-screen has a small delay in response due to queuing of data from the hardware.

Instead of using Isis macros to read the serial port, it would be useful to directly use X

windows drivers for the touch-screen.

" The SQL database queries are performed in a hard-coded fashion. It would be useful if the

system learned the user's preferences during use and became better at retrieving relevant

data about the recipes.

" The evaluation was not enough to capture the details of what users felt for the system.

With a larger set of samples and thorough statistical analysis of the data received, many

insights about the usefulness of the interface, and the system as a whole can be obtained.

6.3 Future Work

Minerva, as a cooking assistant, was noticed to be successful in achieving most of its goals of

being a useful and unobtrusive cooking assistant with an interface that blends into the work space

that it is situated in, and as a research tool, has offered new insights into object recognition,

context-sensitive user interfaces, and extensible system design. Minerva could be extended to

make a fully functional system that uses an extensive database with thousands of recipes, and a

wide recognition of ingredients. Indeed, it would be useful to extract the recipes and ingredient

images (for training the recognition system) from the Internet, though this would require that

the recipes and ingredient images are tagged with sufficient meta-data to indicate their content.

In addition, directly changing the user's preferences through the touch-screen interface would be

a useful feature.

It would also be preferable to make the system have more information about the user's

instantaneous activity the kitchen appliances and other people in the room, so that it can respond

in a more sensitive and useful manner. As an example, it could keep track of how the cooking is

progressing, whether the kettle is boiling over, whether the user is interested in the cooking show

etc. and correspondingly modify its behavior. Further insights can be obtained by creating and

analyzing more evaluations. Some notes about further evaluations are mentioned in section 5.2.

Another feature, that inspired the original work in this direction, is to make connections

between groups of people who are cooking the particular dish. This would not only liven up

the scenario, but would also leverage the advantages of connectivity that computers offer us, in

addition to their number-crunching powers. In conclusion, Minerva is a useful system that can

have a large number of features added to it, and they will each be useful when incorporated into

the system in a modular and user-friendly manner.

Appendix A

Qualitative Evaluation Questionnaire

The questionnaire that was provided for the evaluation, along with the answers from respon-

dents, is given in this section. Only collective results of the answers are provided. Analysis of

these results is presented in Chapter 5.

The background information about the respondents is given below.

1. No. of respondents: 11

2. Age Range: 20 to 50

3. Gender: 8 men, 3 Women

4. Number of Nationalities: 5

The Basics

This table shows the basic information that was collected of the participants. From the table
below, it is apparent that their basic interest and experience levels in the fields that Minerva

tackles were fairly varied (just as their age, gender and cooking preferences were). Thus, this

gives a good range of answers. Even though the number of respondents is limited and large scale

observations cannot be made, the statistical significance of each answer (the confidence level at

which once can trust the responses) is given alongside. The number of responses for each option

is also given next to the option.

Questions Option 1 Option 2 Option 3 Stat. Sig.

Culinary Preference Non-Vegetarian (7) Vegetarian (4) Vegan (0) 99.8%
Rate your level of interest Low (0) Medium (3) High (8) 99.9%
in computers

Rate your level of knowledge Low (2) Medium (6) High (3) 97.5%
in User Interfaces and

their Design

Rate your level of expertise Low (5) Medium (6) High (0) 99.7%
in cooking

Would you describe yourself Yes (5) No (6) 77.4%

as adventurous in your

cooking?

Which of these words better Appreciative (8) Critical (3) 91.9%
describes your attitude

towards computing in the

home environment?

Kitchen Computing:

The following questions were designed to get a general view of what the respondents knew

and thought about computing in the kitchen. It is interesting to analyze their answers to other

questions with respect to the answers they provide in this table and those in the previous table.

Questions Option 1 Option 2 Option 3 Stat. Sig.

What is your opinion on Not Medium (3) Very 97.5%

the use of comp. in Prevalent (2) Prevalent (6)

the kitchen - How

prevalent will they be?

Would you like having a Yes (10) No (1) 99.5%

computer in the kitchen?

Would you like having a Yes (8) No (3) 91.9%

television in the kitchen?

Would you like suggestions Yes (7) No (4) 83.9%

and hints from a computer

while cooking ?

Would you like the computer Automatic (8) Complete 91.9%

to automatically understand Control (3)

your actions and suggest

stuff or would you

prefer complete control?

The Interface:

These questions about the interface tried to judge if the specific Minerva interface could have

been made in any other way that was more appealing and to judge its user friendliness.

Questions Option 1 Option 2 Stat. Sig.

Does the use of a camera to Yes (7) No (4) 83.9%

recognize foodstuff appeal to you

over specifying the ingredients

yourself, if the camera has

only 80% accuracy?

Does the use of a touch-screen Yes (6) No (5) 77.4%

monitor appeal to you over

other forms of interaction

(speech etc.)?

Would you prefer a video Yes (7) No (4) 83.9%

cooking show over a

cookbook with a list

of recipes?

The System:

Final questions to judge the overall success of the system, with regard to certain

that might give a better insight into their responses follow.

other factors

Questions Option 1 Option 2 Option 3 Stat. Sig.

Given a particular set Widen (10) Constrain (0) Neither (1) 99.5%

of ingredients, would a

suggestion of what to cook

with them, widen or

constrain the choices you

believe you could make?

Do your food preferences vary Vary (3) Fairly Constant (8) 91.9%

over time or are they fairly

constant?

Would you prefer a system that

has health information built Yes (7) No (4) 83.9%

into it to restrict certain food

(e.g. no chocolate if you are

overweight)?

Would you use the system Regular (5) On and Off (6) Never (0) 99.7%

on a regular basis,
sometimes, or never?

Bibliography

[1] Vasconcelos, Nuno. "Bayesian Models for Visual Information Retrieval." ,Ph.D Thesis, MIT,

June 2000.

[2] Vasconcelos, Nuno and Andrew Lippman. " A Probabilistic Architecture for Content-based

Image Retrieval", short version in CVPR'00, South Carolina, 2000.

[3] J.Berger. "Statistical Decision Theory and Bayesian Analysis", Springer-Verlag, New York,

1997.

[4] Challapalli, Sailabala. "Modeling the Temporal Components of Video Structure", M.Eng.

Thesis, MIT, June 2001.

[5] Toshifumi Arai, Kimiyoshi Machii, Soshiro Kuzunuki and Hiroshi Shojima. "Interac-

tiveDESK: a computer-augmented desk which responds to operations on real objects", CHI

95, May 1995, pp. 141-142.

[6] Want, R., Fishkin, K., Gujar, A., and Harrison, B. "Bridging Physical and Virtual Worlds

with Electronic Tags", CHI '99, pp. 370-377.

[7] Constantine K. Christakos. "Taking Advantage of Distributed Multicasted Video to Deliver

and Manipulate Television", S.M. Thesis, MIT, August 2000.

[8] Ruud M. Bolle, Jonathan H. Connell, Norman Haas, Rakesh Mohan and Gabriel Taubin.

"VeggieVision: A Produce Recognition System", IEEE Workshop on Applications of Com-

puter Vision, 244-251, 1996.

[9] T. Selker and W. Burleson. "Context-aware Design and Interaction in Computer Systems",

IBM Systems Journal, Vol 39, No.s 3&4, 2000.

[10] H. Lieberman and T. Selker. "Out of Context: Computer Systems That Adapt To, and

Learn From, Context", IBM Systems Journal, Vol 39, No.s 3&4, 2000.

[11] Bill Schilit, Norman Adams, Roy Want. "Context-Aware Computing Applications", IEEE

Workshop on Mobile Computing Systems and Applications, Dec 1994.

[12] Counter Intelligence Group, Media Laboratory, MIT. [http://www.media.mit.edu/ci/]

[13] CNN Sci-Tech Computing Online, September 1998.

[http://www.cnn.com/TECH/computing/9809/30/japan.internet.fridge/index.html

[14] Wendy Ju, Rebecca Hurwitz, Tilke Judd and Bonny Lee. "CounterActive: An Interactive

Cookbook for the Kitchen Counter", Personal Information Architecture Group, Media Lab-

oratory, MIT. [http://www.media.mit.edu/~wendyju/counteractive-final.pdf]

[151 Edison Thomaz Jr. and Florian Mueller. "ImpactTV: Controlling Media with Physical Ob-

jects", Human Computer Interaction International 2001.

[161 Stefan Agamanolis. "Isis: A Programming Language for Responsive Media", Media Labora-

tory, MIT. [http://isis.www.media.mit.edu/]

[17] V. Michael Bove, Jr. and Stefan Agamanolis. "Responsive Television," Proc. IBC 2000, 2000.

[18] A. Van Dam, J.D. Foley, S. K. Fiener, and J.F. Hughes. "Computer Graphics: Principles

and Practice", Addison-Wesley, June 1990.

[19] "bttv2", A v412 driver for Bt8x8 video cards. [http://bttv-v412.sourceforge.net/]

[20] Video for Linux Two (v412). [http://www.thedirks.org/v4l2/]

[21] miniSQL 2.0. [http://www.hughes.com.au/]

[221 Joseph 'Jofish' Kaye. 'White Paper on Counter Intelligence", MIT Media Labs, June 1999.

[23] Matthew K. Gray. "Infrastructure for an Intelligent Kitchen",Masters Thesis, Media Labo-

ratory, MIT, June 1999.

[241 Nitin Sawhney, Sean Wheeler and Chris Schmandt. "Aware Community Portals: Shared

Information Appliances for Transitional Spaces", Personal Technologies, 2000.

[25] Susan Westmoreland (Editor). "The Good Housekeeping Step by Step Cookbook", Hearst

Books, 2000.

[26] A T-test Tutorial. See [http://www.uow.edu.au/science/biol/biol104/ttest/tt230.html]

[271 T-test Online. See [http://home.clara.net/sisa/t-test.htm]

[28] 'Student's T-test for Independent Samples[http://www.ruf.rice.edu/ bioslabs/tools/stats/ttest.html]

[29] William Mendenhall, Wackerly, D.D. and Richard L. Schaeffer, "Mathematical Statistics

with Applications", 1990, Boston: PWS-Kent.

