
 

 

 

 

 

 

 

 

 

 

MAPNEXUS: REAPING THE 

BENEFITS OF A CONTEXT-AWARE 

802.11 POSITIONING SYSTEM 
  

   AUTHOR: JEAN B. ALMONORD 

   ADVISOR: TED SELKER 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

ABSTRACT 

  

Recently, there has been a considerable amount of development in the field of 

wireless position sensing based on the 802.11 protocol. The concept of location based 

sensing is not a new concept; prior to 1999, a great deal had been done with infrared (IR) 

sensors, cell phones, and the Global Positioning Systems (GPS).  Previous work in this 

field includes the RADAR project at Microsoft, which was accurate within five meters 

75% of the time, and the Nibble project at UCLA, which was accurate up to ten feet. 

Similar to most of these projects, the Mapnexus project uses 802.11 position-based 

sensing to determine a user’s location. It was not the aim of this project to pinpoint exact 

locations, but rather a reasonably good approximation to an area (30-40 feet) or part of a 

building and as opposed to a specific room. A good approximation was achieved was 

achieved that was correct about seventy percent of the time. 

The primary aim of this project is to develop an 802.11 context-aware self-

evolving position-sensing interface. The interface will not only alert users with given 

information such as their location, but also with pertinent information based upon the 

user’s location, time, date, and season of the year.  The interface was specifically 

designed with a reasonably sized community in mind such as a medium-sized American 

school campus—in this case the MIT campus. The interface changes dynamically based 

upon known MIT student’s patterns of behavior. For example, the interface changes in 

terms of most of its content and look and feel based upon whether or not it is a weekday 

or not.  

 

 

 

 

 

 



Acknowledgement 

 

No man is an island, entire of itself; every man is a piece of the continent, a part of the 

main.                                                                                                                                                                                

---John Donne (1572-1631), For Whom the Bell tolls 

It is with great pleasure that I give thanks to everyone that has helped in one form or 

another in developing this project. My sincere thanks goes to Professor Ted Selker and 

Napier Sandford Fuller, without their help, advice, and counseling this project would 

have not gotten off the ground. I would like to also thank Professor Henry Holtzman, 

Vadim Gerasimov, Sunil Vemuri, Ernesto Arroyo, Taly Sharon, Will Glesnes, and Sam 

Davies. 

 

 

 

Introduction 

 

A. Motivation for this Project 

 

 

Often times, while walking around the MIT campus in search of a building or a 

location, one must return to a lobby with a campus map in order to locate exactly where a 

given building is. Worse yet, not all of the public bathrooms at MIT are handicapped-

accessible bathrooms. A Handicapped person doesn’t have an easy way of telling directly 

which bathrooms are handicapped-accessible without actively getting to the bathroom 

first.  Many times, one misses interesting events, seminars, and or even lectures simply 

because he/she failed to realize or was not aware that such an event was occurring.  The 

following project looks at a contemporary method of solving such problems altogether. 

 

 This project deals with the creation of an integrated, context-aware, intention-

based interface. It is comprised of two major components: a server and a small client 

software package. The server comprises of an Apache-Tomcat server along with a 

database and a dynamically changing front-end web page. The client software package 

constantly updates the server with certain information such as the host’s Internet protocol 

(IP) address and a listing of the machine address code (MAC) addresses along with signal 

strengths and signal to noise ratios of the Access Points (AP) that it is currently receiving 

signals from. The server serves as a way to forward the information from the web page to 



the database and a place where the backend algorithms are processed. The database is 

used to store the bulk of the information. The web page is used as a front-end interface 

connecting the users to the back-end (server and database). The client piece does the 

backend procedure involving the gathering of the relevant information such as the MAC 

addresses and corresponding signal strengths of the AP. This information is relayed to the 

server every 5 seconds. 

 

The front-end website tells the user a great deal of information. Such information 

includes pinpointing the user’s location in relation to the MIT campus, and finding on the 

blueprint of the buildings the user’s floor and approximate room location—room location 

based upon a quadrant or a ninth of the floor depending on area of the building. The site 

also contains information such as the weather, the next two events that are occurring at 

MIT, information about the nearest eateries/cafeterias, nearest elevators, bathrooms, and 

sports facilities along with their operating hours. 

 

Currently there exist the MIT event calendar, the online MIT campus-map, and there 

is talk about the creation of a website for the tracking the locations of the MIT Saferide 

buses. If people are interested in finding out about their environments, why not let them 

search for such information themselves? The point of this project is precisely to integrate 

all of the above MIT services into one that is context-aware. Such a context-aware project 

will only bother updating users with pertinent information that is relevant to their 

environment. In a way, the purpose of it is to update the user in a useful way of what 

he/she would have found interesting. 

 

 

B. The 802.11 Specification 

 

Nowadays, 802.11 is at least in the technological field synonymous with wireless. 

Although there are other series of wireless specifications such as Bluetooth and others, 

802.11 is predominant in the wireless world, because of its simplicity and efficiency. 

802.11 is a member of the IEEE 802 family, which is a series of specifications for local 

area network (LAN) technologies [1]. Figure 1 shows the components of the 802 family 

and how they relate to the OSI model. 

Every 802.11 network has a name associated with it. That name is usually referred to 

as the service set identifier (SSID). There are “only twelve radio-link channels” that can 

be used in the United States [2]. The SSID typically indicate which logical network is on 

which channel, thus allowing a receiver to use the strongest available signal. Access 

Points (AP) usually send out beacon packets that consist of the SSID, a maximum 

transfer rate, and the MAC address of that access point.  



Clients wishing to join a network must first have a network interface card—also 

known as a wireless card. The wireless card locates the beacon, and then sends out a 

probe request packet. If access is allowed, the AP will respond to the request with a probe 

response packet, which contains the network's SSID. Once the client is on the network, 

the AP serves has the bridge between the wireless networks and wired network  

 

 

 

Figure 1. The 802.11 family and it’s relation to the OSI model [1]  

 

 

C. Previous work with 802.11 Position Sensing 

 

Recently, there has been a great deal of research in regard to wireless position 

sensing. Many office buildings and research buildings are equipped with wireless access 

points, and using the wireless model of position sensing requires very little extra 

hardware.  Once one is able to obtain the preliminary data from the wireless access cards 

such as the MAC addresses, signal strengths, and the signal to noise ratio, the bulk of the 

work is done primarily with software—i.e the algorithms to determine position.  

Previous work with 802.11 position-based sensing include: the RADAR project at 

Microsoft and the Nibble project at the University of California of Los Angeles (UCLA). 

Whereas both projects dealt with position sensing for exactly one floor of a building, it is 

noteworthy that the projects varied in how accurate it was to deciphering one’s location.  

 The Microsoft RADAR project created a mapping of radio frequencies of data 

originating from the signal strengths along with how the user is oriented at seventy 

different locations on a floor of a building. Whereas locating stationary users was  very 

complex,  locating mobile users was one of the hardest tasks of this research. A history-

based method – i.e. history of the past locations where the user have been along with 

some algorithms that will calculate the likelihood of his/her next path— was used to 



handle such cases. The RADAR project was only able to accurately determine a person’s 

location within 16 feet seventy-five percent of the time [3]. 

The Nibble location based sensor, on the other hand used a Bayesian network— a 

network that applies Bayes’s theories of probability to sense location based upon given 

information about adjacent neighbors— to determine the user’s location. The Nibble 

project was able to determine location accurately within 10 feet [4].  It is important to 

note that the difference in accuracy between the latter project and the Microsoft RADAR 

project is approximately six feet.  

An accuracy of 10 feet or 16 feet will both work for the Mapnexus project. This 

project is not overly concerned with pinpointing exactly someone’s location but however 

a general area in the range of 30 to 40 square feet is acceptable. Once such a location has 

been determined, one can easily gather much about the surrounding of such a location.  

One can easily determine if there are bathrooms or handicapped-accessible bathrooms in 

the vicinity, whether or not there are conference rooms, lecture halls, auditorium and 

when they are occupied, and whether or not there are eateries, bookstores, and libraries 

nearby and when they are open. 

 

 

 

D. The Significance of this Project 

 

802.11 position-based sensing is not a brnew concept. Many researchers have done 

interesting researche in the field. The Mapnexus project is significant, however in that it 

is a context-aware interface that relies upon 802.11 position-based sensing to determine a 

person’s location. Once the location has been determined, the interface can then gather 

pertinent information about such a location.  Hence Mapnexus, is different and significant 

in the sense that once a person’s location has been determined, it can dynamically 

retrieve information about such a location and make inferences about which information 

is relevant based upon the time of day, season of the year, and general particular habits of 

people belonging to a particular community.  

The Mapnexus project is also significant because it is designed to deal with a specific 

community. In this case, the community is the MIT campus.  It is obviously the case that 

most of the MIT populace shares some of the same habits, if not similar patterns of 

behavior.  It is obviously the case that during the final examination periods, most MIT 

students are studying on campus. Similarly during the Independent Activities Period 

(IAP), many students either eat out on a regular basis or they cook for themselves. The 

Mapnexus interface could easily manipulate such information to make recommendations 

to students—i.e recommendations about nearby restaurants, supermarkets, and the MIT 

campus dining facilities. It should be noted that this project is different from the Nibble 



and RADAR projects because the domain consists of not only one floor of a building but 

instead of multiple floors of a building. 

 

 

 

Design Criteria 

 

A. Efficiency: Tricks of the Trade 

There were many design patterns that were used in order to achieve efficiency. 

Whereas some of the design patterns that were more obvious in some modules versus 

others, some modules used a combination of design patterns. Some of the design patterns 

used include: the singleton, the factory method, the decorator, and the flyweight design 

pattern. 

 Mapnexus needs to actively retrieve data fairly fast from either the database, or 

from an html page. If the interface were to retrieve such information on each request, it 

would be quite redundant. As a result the module that processes such request, html 

querier, was created as singleton. The fact that it was a singleton ensured that there could 

only be one instance of this module running at a time.  A flyweight design was used as 

the structural pattern.  The flyweight pattern uses sharing to support large numbers of 

fined-grained objects efficiently [6]. Rather than make html queries for every request, the 

module stored information about the past requests that it has made and updates them 

every hour.  

The singleton pattern was also used for the Database Access module.  There only 

needs to be one of such a module, as it would be inefficient to have a numerous amount 

of connection pools to the database. Furthermore, using a singleton assured that the 

decorator pattern could be used for the database.  Decorators provide a flexible 

alternative to subclassing for extending functionality and they attach additional 

responsibilities to an object dynamically [5]. The higher-level modules do not need to 

know what type of a database is storing the files, or what query language is being used to 

make queries to the database.  

 

 

 

 



B. Modularity 

The Mapnexus project was designed from the earliest stage with modularity in mind.  

Many of the components of the interface can easily be broken down into subcomponents 

and these subcomponents can be broken down into smaller subcomponents.  This is 

allowed for a rigorous validation strategy for the entire system, as the individual modules 

could be tested both independently prior to integration and as whole after integration. 

Figure 1 shows a diagram of the layout of the modules. 

The concept of a modular design also proved useful in terms of interoperability.  

Many of the modules that were specifically designed for the interface, can easily be used 

with other interfaces or systems. For example the html querier module— the module that 

goes to certain html pages and retrieves certain information such as a String with time 

6:00 PM-- can easily be used with any interface that needs to extract information from an 

html page.  

 

C. Simplicity  

Keep it Simple Stupid. 

A chief goal of the Mapnexus project was to design an interface that is not only very 

simple to use but also very simple for any programmer to extend.  The interface was 

designed with the mindset that each module should be implemented in the simplest way 

possible--simplest referring not to the lack of complexity but rather to the shortest and 

easiest way possible.  

The original design consisted of many more modules than the currentt design. Many 

unnecessary modules were either deleted or combined with existing modules. For 

example, earlier the database access module- module for retrieving and making queries to 

the database— consisted of two different modules. One module simply created a 

connection pool to the database, and the second one processed request to execute queries 

to the database. Whereas the module that was creating the connection pool was a 

singleton—only one of it’s kind can exist—the module processing the requests weren’t. 

In turn, this might have caused problems if two of the upper processing modules are 

making queries to read or write the same information. As a result the two modules were 

combined into one: the Database Access module. 

 

 

 

 

  



 
Mapnexus: Module Dependency Diagram 
 
         Modules         level- i.e. client, server, hardware 
  
  A       B  dependency relationship denoting that  A depends on B 
 
 
 
Client level       
 
     Weak dependency 
 
 
Server Level  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lower level ~=Hardware Layer  
   

 

 

 

Figure 2. Module Dependency of Mapnexus. 

 

a 

 
MySQL Database 

Wavelan 
adapter 

LogReader 

DataBase 
Accessor 

Location 
Determiner 

 APACHE TOMCAT-SERVER 

 
  
      External 
     Websites 

HTML 
Parser 

   HTML 
   Querier 

   Date/ 
Time/ 
   Season
  
  Analyzer 

JSP Pages 

Context   
Determiner 

         Client 



Overall Design 

A. Position Sensing: Developing a Reasonable Approximation 

The 802.11specification was discussed in the section titled “The 802.11 

Specification.” 

The important data such as the list of MAC addresses and the corresponding signal 

strengths and signal to noise ratios of the different APs were directly determined from the 

wavelan adapters.  In order to determine a user’s position many factors were taken into 

account such as the signal strength along with the signal to noise ratio, and the location of 

the access points. The locations of the APs along with their associated MAC addresses 

were stored in the database beforehand. 

  Every floor of the media lab has on average about 4 Access Points, and if each 

floor is divided into four quadrants the APs usually fall distinctly in those four quadrants. 

Figure three illustrates this concept.  Note that the interface chooses to only work with the 

five strongest signals. Since there are four quadrants and Access Points, two Access 

Points must fall into the same quadrants. To determine the quadrant, one can just chose 

the quadrant that repeats the most among the location of the APs.  

In order to make an approximation of the floor using the given information about 

which floor the access points are on and their signal to Noise Ratio, see the algorithm in 

figure 3. Using the fact, that the best signal to noise ratio will be the nearest to the user, 

the interface makes a good approximation as to the user’s location. This is done by taking 

a difference between the floor that the AP with strongest AP is located, which we can call 

for convenience flr1 and adding it to the difference of the floors that the other APs are 

located times their respective signal to noise ratio divided by sum of all five signal to 

noise ratios. Notice that the difference can either be negative or positive depending on 

whether or not the floors of the APs are above or below. 

It is interesting to note that that the algorithm worked about 65% of the time, and 

when it was off that it was never off by more than one floor. Comparing this algorithm to 

one in which one chooses the location of the nearest AP, the nearest AP approximation is 

not as good if one keeps on receiving really strong signal to noise ratios for APs that are 

far away. The Mapnexus algorithm will give a better approximation in such a case. It is 

only when such an oddity is not present that the nearest AP algorithm will be more 

accurate. These oddities are almost always present; In fact, they are what limit how 

feasible one can use 802.11 to correctly tell location. 

 

 

 

 



 

 

 

 

 

 

Floor 3 

 

 

 

 

Figue 3: Representation of algorithm to determine location 

 

B. Learning about my Environment 

In order to fully make this interface context aware there were many things that had to 

have been done a priori. Some of those things included the creation a list of keywords to 

associate with each season of the year, time of the day, and month of the year, and dates 

of the year. For example 12:00 PM – could be associated with noon, midday, lunch, and 

food.   

Having such associations made it very easy to update the user with pertinent 

information. Every hour, the interface uploads the information about the weather to the 

user. The interface also uploads information about the events that are going on. For this 

information, the interface is also active relying on the concept of time to make a decision. 

In the case of the weather, it is simply the hour. However, in the case of the upcoming 

events, it deals with both the time and searching through the events calendar at MIT for 

the events that not only fall on a particular day, but also after a particular time. 

The interface also highlights certain things about the environment such as the nearest 

bathrooms, handicapped-accessible bathrooms, elevators, and stairways. Originally, the 

goal was to be able to click on these facilities to find out more about them. However, the 

interface did not get to that point in time for this first release. One can also zoom out of 

the quadrant to view the full floor plans and so forth for the MIT map. See figure five for 

an example of such a floor plan. 

- 
*Floors into quadrants  snr1# = signal to noise ratio of MAC # 
    flr# = the floor that Mac # is located on 

 
snrTotal = snr1+snr2+snr3+snr4+snr5 
flr = FloorFuncton(  
 flr1+(flr2-flr1)(snr2/snrTotal)+  
 +(flr3-flr1)(snr3/snrTotal)+ 

+(flr4-flr1)(snr4/snrTotal)+ 
 +(flr5-flr1)(snr5/snrTotal));  

Floor 3      Algorithm to approximate the floor 
Floor 2       
Floor 1  
** representation on each floors 
   

1 2 

3 4 



 

 

Figure 4:View of Site once the client goes to view it 

 

 



 

Figure 5: View of the floor plan when the user has zoomed out. 

 

Design Tradeoffs 

One of the preliminary design decisions was to implement Mapnexus as a central 

server using the simple network management protocol (snmp) in order to reduce any 

work that the client would have to do. The central-server design is similar to the current 

design with the exception of the fact that the client is no longer updating the server with 

the information about the access points. The central server would have provided a 

platform independent way of doing Mapnexus and it would remove any work needing to 

be done on the client side. However, The central-server proved inefficient in many ways. 



It was not scalable. Whereas it would have worked reasonably well, for a small number 

of users, it could easily have been overloaded when many more users started using it. It 

was simply doing too much. The server would need to explicitly extract the IP from the 

http request coming from all clients, and send broadcast packets to every network 

interface that are in the vicinity of the client’s location. Furthermore many networks 

apply security measures such as MAC address spoofing. The central server would have 

no way of verifying the MAC addresses and knowing which ones were valid and which 

ones were not. 

The current design avoids these issues altogether by providing the client with a client 

software package. The client software package can easily update server, which directly 

reduce a great load from the server. Since the client is a trusted by the Access Points that 

it is connected to, the client can software package can in turn self-validate the 

information that it is receiving before sending it out to the server. 

 

Conclusion 

 The Mapnexus project is a simple context-aware interface that uses 802.11 

position-based sensing to determine a user’s location. Once that location has been bee 

determined, the interface dynamically retrieves information that is both associated with 

the location and relevant to the context of time, day of the week, and/or season of the 

year. The information can be as simple as the fact that there are handicapped-accessible 

female bathrooms nearby, or as complex as the fact that there is a seminar occurring 

during lunchtime at such a place and nearby there is a dining room that is open. 

The ultimate goal of the Mapnexus project is to be able to give users detailed 

information such as the fact that there is a seminar occurring during lunchtime at such a 

place and on the user’s way to such a place there are three popular and inexpensive 

eateries specializing in these types of cuisines that are now open. Not only would 

Mapnexus be able to simply know which seminar is occurring at which location and at 

certain time that falls during lunchtime, it would also associate lunchtime with eateries.  

It would only retrieve information about eateries that are on the way to the location where 

this seminar is taking place coming from the location of the user. Furthermore, the 

interface would give the user detailed information about whether or not these eateries are 

open and their specialty—i.e Italian food, Mexican food, Pastry, etc… This would entail 

a true context-aware interface, an interface so user-friendly that most users would grow 

attach to it. 

 The algorithm for determining position based on the access points and the signal 

strength can also be improved. As it stands, the algorithm works most of the time. It runs 

into problems when there are APs that are far away and broadcast stronger signals than 

then the AP’s that are closer. Although, this does not typically have any effects upon 

determining the subsection of a building that a person is on, however it does when it 



comes to determining the floor accurately.  In these particular situations, the interface 

usually report a floor above or below the current floor. 

 

 

Sources 

1. Mathew Gast (2002). 802.11® Wireless Networks: The Definitive Guide. O’Reilly 

Publishing Co. 

2. Larry loeb. Roaming charges: Spoofing the war drivers. Wireless Security through 

obscurity (October 2002). 

3. Bahl, Paramvir and Pasmanabhan, Venkata. A Software System for Locating Mobile 

Users: Design, Evaluation, and Lessons (July 2000) . 

4.Castro, Paul. The Nibble Location System (May 2001)  

5.Gamma Erich et al (1995). Design Patterns: Elements of Reusable Object-Oriented 

Software.Addison-Wesley. 

6.Hans Bergstein (2001).JavaServer Pages. O’Reilly Publishing Co.  

7. Hightower, Jeffery. Location Sensing: A Framework of Techniques and Taxonomy of 

System Properties (June 2001) 

7.Eugene Blanchard (2001). Introduction to Networking and Data Communications. 

Commandpromt, Inc. 

 

 

 


