COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 91

a window interface, a reasoning system, an adaptive user mode] (AUM) which
relies on coaching knowledge and domain knowledge, and a parser (Fig. 7).

To use a computer language effectively, a student needs to understand its
syntax and semantics. So, it is reasonable to use a language definition as part of
the structure of the AUM and use the language definition as a way to classify
User progress and to guide instruction. This would include the domain know]-
edge used to compose statements and the token types used. This definition by
itself, however, does not include all knowledge needed to understand and use a
computer language, because a user must also understand fundamental program-
ming concepts and relationships. The AUM should represent the concepts
underlying the language, and the basis sets necessary to accomplish defined
tasks (see Section 6.3, 1). Each statement, token, concept and basis set may be
referred to as a learnable unit, that is, the smallest quantity of information
represented as a discrete entity to a user. Each of these learnable units is repre-
sented in frames with named slots for useful attributes, one frame for each
learnable unit,

Windows

/ (s fgure

Ty TRy /

+ Reader ! !! .

! (' Reasoning System

' : : Production system |
: ! — ;
' Parser
O : : :

Instrumented

-
-
= -
Mu:m:;fl ll’g;"ser b / Coaching Knowledge
s g, a9
= \ Presentation Rules

Subject Frames
Domain Knowledge

FIG. 7. Dashed lines in the figure represent logical relationships, solid lines represent physical
relationships. COACH is composed of interacting parts or objects. The window interface
manages text editing, output formarting and menus. The reasoning system creales and uses the
AUM to display domain knowledge help and to modify domain knowledge. Coaching knowledge
controls these reasoning activitics, A multilevel parser notes a user's work context and dispatches
information to the reasoning system,

92 EDWIN J. (TED) SELKER

The adaptive automated help architecture must represent examples of each of
these /learnable units and a model of the status of the student in terms of the
particular student’s understanding and ability to use each one.

A user model frame is recorded for new user-defined learnable units as they
are created, allowing the system to give help for these as well. A skill domain
like Lisp, for which a user is being helped, is represented in the system by
these syntactic and conceptual parts. Rules draw on knowledge in frames as they
update user help and frame knowledge. A simplified blackboard mechanism
allows the knowledge module to propose and veto help text before it is presented.
The presentation rules build a list of help items to present. Veto rules and
help presentation space constraints eliminate all but the most appropriate items of
help.

The AUM relies on the production system to make decisions based on the
user model it has built and to decide how to advise the user. The architecture
relies on Al technology both for building the AUM and for guiding instruction.
The guiding knowledge is embodied in domain knowledge facts and coaching
knowledge rules.

Domain knowledge is represented in the help system parser grammar and in
subject and adaptive frames (see Section 6.3.1 below). Subject frames contain
knowledge about the skill domain a user is trying to learn (e.g. Lisp). These
frames are associated with each learnable unit. Adaptive frames hold usage data
and user examples for each function. They are collected as the user works and
comprise the AUM knowledge structure.

Coaching knowledge is contained in rules that create and control the adaptive
frames and the help presentation blackboard. Update rules control the recording
of user experience for the AUM. Consistency rules contain knowledge about how
to build the AUM. These two rule sets work to update the AUM. Presentation
rules embody knowledge for using the AUM.

The parts or “objects” guided by expert systems knowledge comprise the
COACH adaptive automated help architecture. These parts and the way they work
together are described in the following sections.

6.1 Window Interface

The window interface manages the screen real estate. It provides separate panes
for help text, user input, computer output, and for a menu by which the user can
request help (see Fig. 8). It dispatches input key and mouse events to the other
modules and presents computer response and advisory help text.

Text-based interactive environments generally type computer output, help, and
error messages to a single user console window. The user also types into this
window. Confusion often arises concerning which text the computer typed and
which the user typed. The combination of such different streams of information

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

General Help
Help Panes
Token Help
User Interaction Pane Output Pane
| | [MenulPane | |

Fi. 8. The window interface separates user input from help and system responses, A menu
at the bottom allows a user to request help directly.

into one communication channel requires that the user remember which text on
the screen was written by the user and which was written by the computer,

The window interface design used in the initial COACH study physically sep-
arates user input from computer output and advisory help. This segmentation
insures that computer help and advice do not physically interfere with user input.
One way to do this is to vertically separate the token help pane and the general
help pane from the user interaction pane and the computer output pane. The user
interaction pane does not lock the keyboard when an error intervenes; instead, the
character that caused the error (reported on other panes) is highlighted. Using
character highlighting to replace keyboard locking and separate panes to preclude
typing on the user interaction pane provide visual aids permitting the user to focus
more attention on the problem to be solved and less on the computer mechanics.

More specifically:

e The Token Help Pane is positioned as closely as possible to the user interac-
tion pane to allow a user to see it easily while typing. This pane is designed
to give focused help concerning the specific characters a user is typing. For
example, when a novice is typing a token (e.g., a number, symbol, defined
variable, etc.), the token help pane displays help concerning that token. When
the computer can reasonably predict the next token required, such a pane pro-

vides advice concerning it. The pane shows the token name and, as described

in Section 6.3.2, presents various levels of description, example and syntax
help adapted to the particular user. This local information would not be as
useful to users at intermediate and expert levels of proficiency. The adaptive
user model chooses when to eliminate this kind of help.

94 EDWIN J. (TED) SELKER

® The General Help Pane is positioned farther from the user’s immediate
view than the token help pane. This pane presents all teaching knowledge
not presented for token help. Various kinds of teaching text concerning con-
cepts, functions, and user work compete to be presented here. This help
window could be made to shrink as a user improves,

® The Outpur Pane is placed next to the user interaction pane, so as to be
noticed and available but not intruding on the user’s workspace. This place-
ment allows a user to easily compare computer output with input text,
without their interfering with each other on the screen. By contrast, on a
standard “Lisp listener” console, user text competes on the screen with
system error and output text. This output pane provides the same output and
error feedback that a standard system gives.

® The User Interaction Pane is a text editor window. This pane allows users
to enter and edit work just as they do without a help system. Errors are high-
lighted in sequence to allow users to correct them in an organized way, As
users improve and the need for other help windows diminishes, this window
could be made to take up more screen real estate.

® The Menu Pane would be a fixed menu area with spatially separated words
that call attention to additional System support, This menu pane allows the
user to request explicit interaction by using a mouse, rather than by the usual
method of typing requests in a console pane and possibly obscuring current
work already there. While the help panes ordinarily would automatically
provide computer generated assistance to the user, the menu would permit
users who recognize the need for help to initiate a request for it. The help
generated by the request would appear on the help panes. By selecting menu
items with a mouse, the user could ask the computer to give help, show
undefined variables or functions and so on. This pane would give the user an
explicit medium for interaction with the coaching system. The user would
also use the menu for such routine functions as saving and reading files,
logging in or logging out.
Pressing a mouse button in the other window panes could be arranged to
provide appropriate so-called “pop up” menus useful for the context of the
window.

6.2 Reasoning System

The reasoning system controls all aspects of user monitoring and assistance in
COACH. It is made up of a production system which interprets rules and a simpli-
fied blackboard which resolves presentation goal conflicts, Together they operate
on the adaptive user model (AUM) by referring to domain knowledge and using
coaching knowledge to make decisions, as described in the following sections.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 95

In the two decades since MICRO-PLANNER demonstrated the utility of using
a rule interpreter, or production system, to achieve reasoning tasks represented in
rules (Hewitt, 1972; Sussman et al., 1970). many Al architectures have included
them (Davis and Shortliffe, 1977; Barr and Feigenbaum, 1984). For a time it
seemed that AT and rule systems were synonymous. The components of a rule
system are, in fact, basic to Al representation and search (Winston, 1977; Barr and
Feigenbaum, 1984). In order to demonstrate reasoning and learning in real time,
COACH limits itself to a forward-chaining rule system. This means that rules are
searched through in order and fired when they apply. By breaking the system into
small rule sets and not using backward chaining (a goal-oriented rule search),
COACH avoids both indeterminate and long searches. This is necessary to allow
real-time advising.

Knowledge for building a user model and for coaching can be separated into
sets of rules, each of which operates in specific situations. The search time in a
rule system can be significantly decreased by breaking reasoning rules into
groups or rule sets that are scanned for specific reasoning needs, For example,
with this kind of segmentation, if a token is used incorrectly, only rules that
provide help for incorrectly used tokens need be consulted. Section 6.3.2 will
describe rule sets upon which the model depends for reasoning.

Rules are made up of an antecedent and a consequent. The antecedent part must
be true for a consequent part to fire. Both parts are Lisp s-expressions.

Rules may be defined with the following simple Lisp syntax:

(DEFINE=RULE

(rule-name rule-set-name) (user-model-parameters)
IFs-expressions
THENs-expressions)

The order of rules in a rule set determines the order in which they will be run.
The rule’s antecedent, consequent, and position in the rule set determine the
reasoning behavior,

A blackboard allows statement-proposals and statement-vetoes to interact in
reasoning decisions. Blackboard architectures were first introduced in Hearsay, a
speech activated chess playing program (Erman and Lesser, 1975). The Hearsay
blackboard was an innovative distributed decision making paradigm for running
the system. Different levels of speech recognition each had different parts of a
blackboard. Knowledge sources could post proposals and look at proposals on the
blackboard. Through this blackboard communication process, multiple knowl-
edge sources collaborated to interpret speech related to chess moves. This archi-
tecture has had a continued and marked influence on the artificial intelligence
community.

A blackboard is used in COACH to arbitrate adaptive help presentation. Rules in
the presentation rule set are knowledge sources that propose and veto various kinds
of help to choose the appropriate text to be presented to a user. The order in which

96 EDWIN J. (TED) SELKER

proposals are posted on the blackboard determines their priority. Vetoes might take
proposals off the blackboard. A knowledge source decides to present between one
and three help text items on the help window. The three highest priority proposals
on the blackboard represent text which would then be presented to the user.

6.3 System Knowledge and the Adaptive User Model (AUM)

An Adaptive User Model (AUM) is a formal description of a user relative to a
domain that tracks changes in the user’s knowledge in that domain. COACH uses
an explicit user model. Frames, facts, and rules represent the user and the skill
domain the user is learning. The AUM is a set of user model frames (Minsky,
1976) for syntactic and conceptual parts of the domain being coached. While the
user is working on a task, these frames record aspects of the user’s successes and
failures. The AUM for COACH is composed of this representation of the user and
an associated reasoning system for creating and accessing knowledge frames. The
defined network of relationships between skill domain parts, what the user is
doing, and the state of the user model is the basis for selecting user help.

The reasoning system uses this network of domain knowledge and coaching
knowledge in the form of rules together with the AUM. Reasoning and planning
about how information interacts, the way the system updates the AUM, and even
the system’s adaptation algorithms reside in rules in COACH. By changing these
rules, a researcher could tailor help for different skills and pedagogical theories.

Each skill domain part has a help knowledge frame. These frames can include
descriptions, syntax. and example help at the four levels of help proposed by the
taxonomy described in Section 5.3.

6.3.1 Domain Knowledge

(1) Adaptive frames. The AUM frames for each learnable unit have the
following user model characteristics or slots:

(a) User examples. Examples are recorded of user errors and user correc-
tions of those errors. When a user makes a mistake, the system records
it. When the user is able to correct the mistake, the system stores
that “fix” with the example. If the user later makes a syntactically
isomorphic mistake, the system displays the familiar earlier example.

(b) Usage data. The following information is also recorded:

(1) experience (how often a particular learnable unit has been used by
this user);

(ii) latency (how long since the user has used this learnable unit);

(111) slope (how fast the user is learning or forgetting something):

(iv) goodness (a measure of the user’s overall performance with
respect to this learnable unir).

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 97

A demonstration of rules that use these slots is contained in Section 6.3.2.

(2) Subject frames. Subject frames (Fig. 9) are made up of a subject defini-

tion along with various kinds of related material and deseription text,

syntax text and system-defined examples (by contrast with the user-created
examples) for the four levels of help.

The reasoning system described above (see Section 6.2) and the multi-
level parser described below (see Section 6.4) rely on the subject frames
and adaptive frames to run the user interface. The knowledge exists in slots
within the frames.

Subject frame styles are defined for each type of learnable unit (state-
ments, tokens, concepts and basis sets). Each learnable unit has its own
frame. Formally, the learnable units are represented as follows:

(a) Language statements: S. Statements are learnable units which are
defined in a syntax facts table described more fully in Section 6.4. This
table is extended by user-defined functions. A simplified definition for
PLUS, for example,is (L PLUS * N 1).In this notation described
in more detail later (see Tables 4 and 5). the star, “*” indicates that

Statements, Tokens, Concepts, Basis sets :

Adaptive Frames Subject Frames

Usage data Descriptions # domain
User examples * Syntax * knowledge
Related material

System examples *

Update Rules Consistency Rules Presentation Rules coaching

knowledge e
"""""""" [Blackboard]
— user
L knowledge 5 g
P input

* four levels of representation in expertise hierarchy

O Adaptive User Model (AUM) knowledge

FIG. 9. The knowledge and reasoning structure in an adaptive coaching environment. For

each leamable unit, AUM and subject frames are built and controlled by model building and
help presentation rules.

EDWIN J. (TED) SELKER

what follows can occur zero or any other number of times. Open
and closed brackets, “L" and “1”, represent parentheses and the N
represents a number type argument.

Statement knowledge is a tuple S (L,SH,D,SE,R,0) where:

()
(i1)

(iii)

(iv)

(v)

(vi)

Language syntax. L is the statement’s formal definition which
COACH uses to evaluate user work (see Section 6.4.3).
Syntax help: SH frame slots contain formal abstract help defini-
tions of a learnable unit. For a specific level in the help taxonomy
(starter, model, reference or expert), the syntax describes
the learnable unit in more detail. Concepts are introduced by
examples; the syntax assists a user in internalizing the concepts.
Description help: D frame slots contain help text for each level of
the help taxonomy. These slots contain text explaining what a
specific learnable unit is useful for, information describing when
it can be used, and an explanation of what it does.
System example: SE frame slots contain helpful examples typify-
ing a learnable unit for a specific level in the help taxonomy. The
user examples contained in the adaptive frames described above
supplement these system examples.
Required knowledge: R frame slots hold the set of skill domain
parts with which a user must be familiar to use a particular lear-
able unit (e.g., using the CONS function requires a user to under-
stand the evaluation, s-expression, and atom concepts). This set
defines a network of related material. Required knowledge makes
it possible for a reasoning system to form the strategies needed to
create teaching goals in a coaching environment. The required
knowledge set details the necessary prerequisites for understand-
ing a particular learnable unit. If a user is having trouble with a
particular learnable unit, COACH displays related things with
which the user is already familiar or which could be considered as
alternatives. If a user is doing well, this knowledge allows
COACH to see how to encourage the user to learn new learnable
units which relate to ones already known.
Required knowledge is a tuple R (*F,*C,*T) where:
@ Function: F is a statement name,
® Concept: C is a concept name (described more fully below).
® Language token: T is a token type of the domain language
(described more fully below).
Other related knowledge: O is a set of learnable units which are
pertinent to another learnable unit. This set defines a network of

. Open
I the N

which

defini-
onomy
iscribes
ced by
cepts.
level of
what a
g when

typify-
av. The
| above

domain
r learn-

under-
This set
: makes
eded to
equired
‘rstand-
¢ with a
zs with
lered as
allows
arnable

ow).
mguage

1uch are
work of

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 99

relationships which helps the architecture utilize the concepts that
tie the domain together. This network is crucial to the coaching
that will expand a user’s breadth and, when necessary, search for
alternative teaching approaches.

Other related knowledge is a tuple O (*F, *C, *T). F, C, and T
are defined above in “required knowledge™.

(b) Language tokens: T. Tokens are learnable units which are keywords

and acceptable variable types for a skill domain (e.g., “(”, “CONS”).

They are defined in a table with associated token methods described in

Section 6.4.1.

Token knowledge is a tuple T (SH, D, SE, O). SH. D, SE, and O are
defined above in “language statements”.

Concepts: C. Concepts are learnable units which are semantic ideas

not codified by syntactic parts (e.g., evaluation, iteration, stored vari-

able, etc.).
A concept is a uple C (*F, *C, *T). F, C. and T are defined above
in “required knowledge”.

(d) Basis-sets: B. Basis sets are learnable units composed of groups of
other learnable units comprising minimal sets of knowledge necessary
to understand a topic. This term is borrowed from mathematics where
it defines a similar concept.

An arithmetic basis set, for example, would require a user to know
about PLUS, DIFFERENCE, and the List and Number concepts. The
elements of a basis set are skill domain parts, all of which must be
known to do a task in a particular topic area (e.g., the basis set for
“simple-lists” includes CONS, CAR, and CDR and the atom and
s-expression concepts). Generally, basis sets will be a subset of a
required knowledge set; for example required knowledge for List
includes the Eval concept as well as CONS, CAR, and CDR. Basis sets
may be elements in O or R sets of learnable units. These allow the
system to reason about basic knowledge a user may be missing when
trying to use a learnable unit,

A basis-set is a tuple B (*F, *C, *T). F, C and T are defined above
in “required knowledge”.

—

(c

The subject frames described in this section create a domain representation in
COACH. This representation consists of syntax, descriptions, system-examples,
and related materials for each learnable wnit in the domain. The language syntax
definitions, L, define knowledge with which COACH can record correctness of
user work. Required knowledge, related material, and basis sets, included as R, Q.
and B, define relationships between parts of the domain, much like the links in a
hypertext system (Conklin, 1986). This network, R, O, and B, can in fact
be browsed like hypertext. More importantly, these are the basis for COACH

100 EDWIN J. {TED) SELKER

reasoning about relationships in the subject domain. Rules like “explore
exploration” and “out of practice” described in the next section use these to orient
and teach users.

These subject frames are augmented by the AUM to give a rich representation
from which coaching knowledge makes decisions.

6.3.2 Coaching Knowledge

Coaching knowledge is embodied in rule sets which suggest information to
place on help windows.

Rule sets for creating and maintaining the AUM consist of update rules
and consistency rules. These rule sets change the AUM frames each time the
parser signals a change in parse state. In this way, user model frames are
changed each time a function is closed, a token is typed, a token 1s found to be
undefined, etc.

Presentation rules consult the parser, the AUM and the blackboard to make
decisions about what to present. Detailed analysis of two of the more interesting
and complex of the presentation rules is provided below.

(1) Update rules. A simple update rule set consists of rules with the following
mnemonic names:

(a) Note-Success (activated by a correct usage of a learnable unit,
improves user rating on AUM frame slots for a learnable unit and
related material).

(b) Note-Fuilure (activated for an incorrect usage of a learnable unit;
decreases user rating on AUM frame slots for a learnable unit and
related material).

(¢) Was-Bad-but-Gerting-Better (activated when a user has a success with
a learnable unit which has been problematic; increases user ratings).

(d) Was-Good-but-Getting-Worse (activated when a user begins making
mistakes for a learnable unit which has previously been rated well;
decreases ratings slowly).

(e) Best-and-Getting-Better (activated when a user continues to use a
learnable unit correctly at more sophisticated ratings; bumps up Best).

(f) Worst-and-Getting-Worse (activated when a user continues making
mistakes in use of a learnable unit that has been being used poorly;
bumps down Worst).

(2) Consistency rules. A consistency rule set would work with update rules to
create and maintain a user model. A simple consistency rule set has the
following mnemonic names:

(a) Note-Used (activated each time a learnable unit gets used).

(b) Maintain-Best (works with Best-and-Getting-Better to bump up Best).

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 101

(c) Maintain-Worst (works with Worst-and-Getting-Worst to bump down
Worst).

(d) Bound-Goodness-and-Best (activated to record user's “personal Best™).

(€) Bound-Goodness-and-Worst (activated to tecord user’s “personal
Worst™).

(3) Presentation rules. Presentation rules determine the help that will be pro-
vided to the user, posting and removing the various possibilities on the
blackboard. Specific presentation rules “argue” for their position and the
blackboard records the result which is presented to the user. Separate pre-
sentation rules exist for statements, tokens and concepts. Their particular
order determines which text will have priority for use as help.

For the purpose of creating COACH (and the evaluation of COACH in
Section 8), a model rule set for presentation of statements contains the
following rules mnemonically named:

(@) Losing-Ground (provides the user with the most basic help).

(b) Out-of-Practice (reminds the user of information that was previously
understood).

(¢) Encourage-Exploration (suggests useful information not presently
being used).

(d) Veto-Overly-Sophisticated-Help (protects the user from help beyond
an appropriate level).

(e) Veto-Extra-Help (protects the user from too much help).

To give a feeling for how these rules work, an examination of a few of them
follows.

A simple “Losing-Ground” rule provides a user with examples:

IF

learnable unit used has a Low Goodness score
and a low learning Slope,
THEN

PUSH a User-Example onto the blackboard, and
PUSH a System-Example onto the blackboard.

This rule implements the following concept: if the Slope and Goodness
measure are both low, then the person is doing poorly. In such a situation, the rule
proposes that both a prior user-example, if available, and a system-example of
correct use of the statement be placed on the blackboard for the confused user.

Besides pushing things onto the blackboard, the system might use other rules,
such as “Veto-Extra-Help”, to take inappropriate information off the blackboard.

IF

user expertise for this learnable unit is NOT
better than the Best it has been

102 EDWIN J. (TED) SELKER

THEN
PUSH Veto-Extra-Help onto the blackboard.

This rule implements the following concept: if a user’s expertise is not at its
highest point so far, tell the blackboard not to provide overly verbose help.

The defined network of relationships is used in rules such as “Encourage-
Exploration” to expose a user to new information.

IF
learnable unit has a high Goodness score, a
noen-negative Slope, and has been used many Times
THEN
FUSH previously unused Related and Regquired
knowledge for the learnable unit onto the
blackboard.

This rule implements a tutoring concept: if a user is doing well with a learnable
unit, expose them to more material in that area of knowledge.

6.4 Instrumented Multilevel Parser

The domain a user is trying to learn (e.g., Lisp) has a syntax—the set of things
a User can type that are correct and interpretable. Like the standard UNIX facility,
Yet Another Compiler Compiler (YACC), and LEX (Kernighan and Pike,
1984a), COACH includes a general-purpose parser which uses state machines to
classify character and token types to drive lexical analysis. A formal language
definition drives actual parsing strategy. Unlike other parsers, the COACH parser
is instrumented to run rules and add knowledge to a user model after each
keystroke.

The multilevel parser (see Fig. 10) structurally separates different kinds of data
about the user’s interaction with the system. It is made up of a character classify-
ing table, a token parse table, a token attribute grammar parser, and a statement
attribute grammar parser. The parser structure, function, and syntax are described
below,

6.4.1 Parser Structure

Character Classifying Table. The character classifying table lists all the
characters and their functions. It is an efficient mechanism for classifying each
character’s impact on a user’s work. Character types can readily signal delimiters
and user mode changes with one computer array reference instruction. Use of
this technique for the two “bottom-most™ analysis levels is part of the overall
strategy of real-time response required to provide an automated adaptive coaching
interaction style.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

B gga;r;?&tie;g Delimiter parse level (e.g., A)
K Table
E
N
-]-;;.‘. ..
E Token Token parse level (e.g.. AB)
A Parse
D Table
E
. !
Token Attribute Grammar Actions
Syntax parse level (e.g., (ABS 7))
[ABSN] Actions
Statement Attribute Grammar Parser

F1G. 10. The structure of a multilevel parser.

Token Parse Table. A token or word in a user input language has meaning
by nature of its kind or “type”; it might be a number, keyword, variable name, etc.
The token parse table (see Tables I-III) notices token type changes and dispatches
tokens to the token reader. It is the next level of user input analysis. As with the
character classifying table, the token parse table uses a lookup technique, which
permits most user context changes to be recognized without resource intensive
reasoning.

Token Attribute Grammar Parser. Recognition of a token could have
side effects. The token attribute grammar parser is tied to the token parse table to
handle token level interpretation of user typing. Each token has an associated
“Object method” which analyzes the impact of a token’s completion. The
methods call for coaching help, update the user model, and change the way
COACH views the domain and the user.

Statement Attribute Grammar Parser. Syntax is the defined order in
which tokens can legally follow each other. The statement attribute grammar
parser handles the lexicon and builds a structure describing the syntactic unit the
user 1s typing. User input is filtered through this parser for lexical analysis. Static
semantics refers to the meaning attainable from a program without running it.

104 EDWIN J. (TED) SELKER

TABLE |

MODEL TOKEN PARSE TABLE SUFFICIENT TO BREAK LISP INPUT INTO DELIMITERS, ERROR
STATES AND TOKENS

Current state

Character read pls min sym qte st cmt num shp hlp
er hip hlp hlp hip hip hlp hlp hlp hlp
sp hlp hlp sym sym st cmlt hlp hlp hlp
num num num sym sym st cmt num hlp min
chr sym sym sym sym st cmt SVIm hlp min
opn pls pls pls pls st cmt pls hlp hlp
cl min min min hlp st cmt min hlp min
qte hlp qte gte qte st cmt qte shp hlp
st st st st st min cmt st hlp hip
cmt emt cmt cmt emt st emt cmt hip hlp
ecm pls min min hlp st min min hlp hlp
blnk pls min min min st cmt min hip hlp
shp shp shp sym sym st cmt hlp hlp hip
TABLEII

SYMBOLS IN A TOKEN PARSE TABLE BREAK UP INPUT INTO POSSIBLE DELIMITERS AND
SPECIFIC TOKEN TYPES

er cntrl characters etc. Characters not used in the domain,

sp Special characters.

num 0 - 9and . The decimal numbers.

chr a - zandA - 2 The standard roman characters.

opn ¢ Open parenthesis symbol.

cl) Close parenthesis symbol,

qte ! Single quote is the Lisp QUOTE macro symbol.
st e Double quote is the string delimiter symbol.
cmt ; Semicolon is the Lisp comment delimiter symbol.
ecm If er Characters that end Lisp comments,

blnk Blank space character.

shp # “Pound” or sharp character.

Syntactic and static semantic advisory responses are triggered by this parser. The
statement parser sends information about the user to the AUM. As explained
below, a simple description language can be used to create statement templates.
The parser steps through these templates accepting user input. The parse state
pushes onto and pops off a stack as expressions are evaluated.

6.4.2 Parser Function

The mechanics of, and the relationships required between, these elements of

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

TABLE 111

STATES IN TOKEN PARSE TABLE. THESE STATES MODEL AND EXECUTABLE
PARSE OF TOKENS. LANGUAGE PARSING IS DRIVEN BY THESE STATES

pls Is the start of form parse state.

min Is end of parse context state.

sym [ndicates a symbol is being parsed.

qte Indicates a quoted object is being parsed.
st Indicates a string is being parsed.

cmt Indicates a comment is being parsed.
num Indicates a number is being parsed.

shp Indicates a macro is being parsed.

hip Indicates an illegal object is being parsed.

the parser will now be described. The token parser can be modeled by a finite state
automaton. The COACH interpreter is parsing, not to interpret the domain lan-
guage, but rather, to build a user model and to note teaching opportunities.

Table I shows details of transitions that can determine Lisp token delimiters for
COACH. As characters are accepted by this token parse table, they are added to
the partially constructed token. The token parse table takes the current parser
“state” (the column) and the current character (the row) as input to determine the
reader state. For example, if the reader were in string state, s t, and received an
illegal character, e r, the reader would change to the help, hLp, state.

The character classifying table, the token parse table, and the token attribute
grammar parser collectively comprise the token reader. The accepted characters
and the state of the parse table drive the token reader.

A function for each token type checks token side effects of the parse state.
When a new Lisp variable is read, for example, such a function would add it to the
user's environment as necessary,

When a token is accepted, the AUM is updated. A statement is composed of
legal tokens in a syntactically legal sequence defined by language parse templates.
The statement attribute grammar parser is controlled by language parse templates.
Each time a token is accepted by the token reader, the statement parser takes a step
through the currently active template and predicts what the user might need to do.

The acceptance of a token and progress through a template cause the rule
system to select presentation help. The template state and past input give the
AUM knowledge of user goals that are often adequate to predict expected needs
(as described in Section 6.3).

The statement parser uses a formal language to describe syntactic parsable

expressions in templates. If a statement call is made, a new context is started. for
example

(SETQ a (CONS

106 EDWIN J. (TED) SELKER

makes the CONS statement parse template active, pushing the SETQ parse
template onto the pending parse stack, The stalement parser steps through these
templates, pushing them on and popping them off the pending parse stack, as new
contexts are started or completed.

Expression side effects can be further detailed in an action function to be run
after a parse is accepted so that COACH can keep a record of the user’s environ-
ment as well as the user’s state. To implement side effects, a token or function can
have an action function associated with it. When the adaptive automated help
framework has completed recognizing the token or function, the action function
will run. The SETAQ function, for example, has an action function which adds new
variables to the known variables ljst.

A more complete example can demonstrate the statement parser in action:
writing an s-expression to sum three with the product of five and four, Starting in
the beginning state, when the user types

(

the reader puts the statement parserin the p U s state. The token rule set now consults
the adaptive frames to decide whether help concerning a function name should be
displayed for this user, and if so, what kind of help is needed. As the user types

PLUS

the statement parser makes the PLUS parse template the current template. The
function rule set and blackboard now use the AUM to decide how much and what
kind of help to present. The token rule set fires to decide what immediate help to
present, possibly indicating that a number is called for in the PLUS parse tem-
plate. If the token rule set demonstrates user need, number help is given to the user
as three is typed in. While the product is being entered, the parse stack has to
remember the PLUS parse state. The TIMES parse template is now put on the
parser stack. The function help rule set is fired again to reason as to what help to
present for the TIMES function. When the product is ended with a

)

the sum parse template comes into force. When the sum parse template is closed, the
beginning state would be in force. A rule set now gives top level help if appropriate.
Each transition change above causes an action function, if it exists, to run when
a token or function is recognized.
The multi-level parser rule system and the AUM work together as an architec-
ture for adaptive help.

6.4.3 COACH Syntax

Languages can be formally defined. Specifically, they are defined by a
grammar and alphabet (Hopcroft and Ullman, 1979). COACH uses a formal

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 107

language representation of a subject domain to assess user work and progress. The
domain language is defined for the statement attribute grammar in a formal,
context-sensitive syntax notation. This notation is shown with the Lisp system
key symbols in Table IV,

Logical conjunction in a template is indicated by juxtaposition. A legal state-
ment or sentence, S, consists of a string of symbols from the alphabet (described
.in Table V) that satisfies an expression in a legal syntax table.

In the formal language definition, key symbols, control symbols and delimiters
are surrounded by a set of parentheses:

{s = (*{A})}

The language can be described as being made up of the alphabet:

A = A,S,N,L,F,X,Q,FS,<,2,0,1,V,7,%, aXXXX

TABLE IV

LANGUAGE PARSE MODEL: TOKEN TYPES

atom

defined symbol

number

list

function

any of the above types
check only parenthesis level
function specification

me X M Z un B

w

Notes: These allow modeling of Lisp’s major token
types. Such a parser table is designed to analyze user
proficiency; a language parser designed to implement
a language might have more types.

TABLE V

LANGUAGE PARSE MODEL SYNTAX DELIMITERS

open a syntactic parse unit

close a syntactic parse unit

(, open a clause

), close a clause

next svntax part can occur () or more times

next syntax part can occur 0 or 1 time

at least one component of the next clause must occur at least once
consider the following characters a symbol

B < 9 % MW

Notes: The parse modeling language itself has immutable token type
control symbols to allow designers to describe a language to be coached.

108 EDWIN J. (TED) SELKER

where XX XX is any string of characters. Delimiters should always come in pairs:

{3, [1.

In the Lisp language, a new $ is signaled by an open parenthesis, represented
by a [, so all s-expressions end with a closed parenthesis, represented by a 1. (The
UNIX command language ends commands with a carriage return, and so does not
require this 1.)

The COACH architecture uses an attribute grammar parser. Each token type
and each completed parse sends an :action message when recognized. Each
key symbol in the notation has a method (function) associated with it which can
cause an action during the parse.

Functions that the system parses are described in this notation. The simple
example

L ABS N 1]

defines the absolute value function as requiring a parameter of type number. A
slightly more complicated syntax such as

L seT@e ~ { A X X 1]

requires 0 or more atom-anything pairs for a legal “sentence”.

6.5 Conclusion

Section 6 has described the COACH architecture. Several representations work
together to create help for the user: the subject frames (definitions of the domain),
the adaptive frames (recording of a user relative to a domain), the presentation
rule sets (which embody a model of teaching), and the multi-level parser (syntax
domain definition).

The section has further shown how formal representations are used for domain
knowledge, teaching knowledge, adaptive strategy, and the way the adaptive
frames are used to create a coaching advisor, The next section discusses
additional reasons for using these multiple interacting representations.

The COACH]/2 system is somewhat different. It does not require the author to
write syntax text. COACH/2 keywaords are the spatial and graphical elements on
the screen. It defines arguments to these icons, dialog boxes, etc. as the mouse
actions or typing that is transmitted to the GUI element.

7. A COACH Shell

COgnitive Adaptive Computer Help (COACH) is a proof by demonstration of
a real-time, adaptive, advisory agent. Demonstrations of possibility are important,

109

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

but further progress in a field requires tools to make experiments feasible. As well
as being a demonstration, COACH was designed to be a testbed for understand-
ing adaptive user interaction. The structure is organized to allow a courseware
designer to change the skill domain information, the presentation approach or the
adaptive strategy with minimal effort. It has been used to show that COACH can
work for open systems (see Section 5) and with different domains, and can
support experimentation with user modeling and help presentation strategies.

7.1 Using COACH in Open Systems

Open systems are systems which are too big to be analyzed or which grow with
use (see Chapter 5). The Lisp COACH demonstration shows that adaptive user
help can be used for open systems.

COACH creates user models and provides help for any number of system func-
tions and new user functions. The system was tested on a twenty-five thousand
function Lisp programming environment. Since help text could not be provided
for all of the constantly changing Genera Lisp functions, a mechanism for adding
help for functions as they get used was provided instead. Multi-level help was
provided for a basic set of functions and was automatically augmented to include
any other functions actually used or added by a user.

COACH queries the Genera Lisp environment for a syntax description which it
uses to start a user model for a previously unknown function. When a user defines
a new function. COACH records its syntax to start a user model for this function.
As newly added functions get used, examples of correct and incorrect usage are
collected for use as example help text.

7.2 Using COACH For Different Domains

COACH works from a courseware designer’s definition of a domain language.
A UNIX version was created to demonstrate that COACH can be ported to dif-
ferent domains.

Matt Schoenblum, a talented seventeen-year-old high school student without
programming experience, was able to demonstrate this capability by adapting the
COACH system to teach the UNIX operating system’s shell command language
(Kernighan and Pike, 1984b) in a ten-week internship. Schoenblum learned
enough UNIX to be comfortable using it to edit documents, send mail, transfer
data, print things, ete.. to accomplish his work. He interviewed UNIX users to
identify twenty key UNIX commands and wrote multi-level help text for these
commands. He then defined delimiter and token types needed for the system to
parse UNIX commands. Finally, he wrote syntax definitions for all identified
commands. COACH enabled such an accomplishment by only requiring data,
rather than reprogramming. to create a help system for a new domain.

110 EDWIN J. (TED) SELKER

Two functions were provided to handle the new tokens which were used in
UNIX but not in Lisp: the carriage return delimiter and the “anything” (or *)
token. Changes to the parse table—altering the end-of-statement delimiter from
)" 1o carriage return and eliminating the ;" for comments—were provided as
well. At the time, the COACH system only ran on Symbolics computers. A
command caller which interfaced to a UNIX workstation over a Telnet
(Kernighan and Pike, 1984b) connection was proposed but has not yet been
tested.

This UNIX help system was experimented with by several people, and
improved through iterative experimentation. No formal study has yet been
performed with it.

7.3 Experimentation With Help Presentation Strategies

COACH also supports experimentation with help presentation strategies. All
help presentation is managed by rules. These rule sets have allowed continued
testing and changing of the coaching strategies in the COACH implementation
(see Chapter 6 above). Several students have experimented with the rule system
to learn about adaptive strategies (Matt Kamerman, Kevin Goroway, Frank
Linton, and Chris Frye).

These experiences demonstrated that the COACH can be used as a shell for
developing proactive, interactive adaptive computer help systems. The COACH
implementation gives proof by demonstration that adaptive computer help works
in open systems, for different domains, and supports experimentation with adap-
tation and help strategy. The next section describes experiments which show
COACH can improve student performance.

The COACH/2 system has allowed instruction development professionals with
no programming expertise to create help content for 0S/2.

8. Evaluation of COACH Adaptive User Help

Two user studies have been performed to evaluate COACH. A preliminary
study investigated COACH user perception differences. The second study quanti-
tatively demonstrated these differences and performance improvements as well.
In this five-session Lisp course, the system was found to improve both perfor-
mance and perceived usability when compared to a version which offered only
non-adaptive user-requested help. This is the first demonstration of an adaptive
interface showing performance differences for users.

Enhanced interface features available to both groups may have improved pro-
ductivity as well (e.g., the pointing device, on-line selectable help, separate input
and output windows, real-time error detection, etc.).

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

8.1 Pilot COACH Study

A pilot study was conducted to evaluate automated adaptive help in the
COACH system and to flesh out issues for the full scale study. Six programmers
who had no knowledge of Lisp were recruited from research staff, programmers
and co-op students at IBM T. J. Watson Research Center. The three day course
consisted of a classroom lecture each evenin g followed by a work period. The stu-
dents worked through exercise sets, and responded to interview questions and
quizzes. Each evening involved a new exercise set. One group performed work
using COACH, the other group used a standard interpreted Lisp reader on an IBM
PC-RT computer.

Many differences between the actions and reactions of the two groups were
noticeable. Students appeared much more energetic and productive when they
were using COACH. They used the on-screen help and they put their fingers on
the screen. While the COACH students tended to experiment within the system,
the other group tended to write ideas on paper. When, on the last night, the groups
switched places, the behavior also switched.

However, technical difficulties and the small number of participants make
formal analysis of the pilot study uninteresting,

8.2 Quantitative Study; Demonstrating COACH Usability
Improvements

Major improvements to the pilot study were included in the full, quantitative
study:

® The lecture format of the pilot study was changed to a self-paced format in
the full study because it had appeared that the lectures made the students
feel pressured. They seemed to believe that the difficulties they were having
were caused by the lecture, when in fact, the course was designed to be
difficult.

® The students in the pilot study appeared anxious and self-recriminating
when they could not finish the entire exercise set provided for that evening.
So, for the full study, the three exercises from the pilot study were combined
into one unbroken problem set. This relieved some of the unnecessary
performance pressure.

® In the pilot study, the group using the adaptive automated help seemed to be
enjoying themselves, while the other group did not, so a daily comment
sheet was added to the course to record the way students felt.

® Recorded audio interviews were added for the same reason.

® Improvements in the COACH implementation reliability made the mechanics
less daunting.

112 EDWIN J. {TED) SELKER

® A version of COACH without an AUM was arranged for the control group.
This allowed the study to concentrate on the value of an AUM. the central
COACH technology, rather than other ergonomic advantages of COACH,

The full study tested the hypothesis that an adaptive coaching paradigm can
improve user productivity. Normally COACH adapts to its user and automatically
offers help at an appropriate level of understanding for that user. A method was
devised to focus the user study on the comparison of automatic adaptive help with
user-requested help. A control version of COACH was created which included all
interface aids, but excluded the AUM, which had the effect of eliminating the
automated adaptive help. It still separated user actions on the window panes from
system actions when reporting errors and displaying user-requested help (Fig. 8).
The study compared user experiences with this control version and experiences
with the automated adaptive version.

8.2.1 Method

Nineteen employees of IBM T. J. Watson Research Center were recruited.
They varied from summer interns to professional programmers. While all of these
“students™ had prior programming experience, none had previous experience with
Lisp.

The students were recruited with an electronic poster. The poster solicited
people who knew how to program but had no exposure to the Lisp programming
language, and who wanted to participate in a short class/study teaching Lisp.
Incentives to participate were sandwich dinners. exposure to the experimental
system, and the promise of learning a new language.

The students were separated into an early session meeting from 5:00 p.m. to
6:00 p.m., and a late session meeting from 6:00 p.m. to 7:00 p.m., each day for
five days. Attempts were made to assign students to whichever session best fitted
their schedules. Students were assigned at random to use the manual help or to use
the adaptive help. By the time the course was underway, eight students were using
the manual help system and eleven students were using the automatic adaptive
help system.

Courseware created to support the user study include a course introduction, a
Lisp tutorial, and an EMACS editor reference card. Materials used to evaluate the
students consisted of a test given before the course began (pre-test), daily
comment sheets and a test given at the conclusion of the course (post-test). In
addition, audio interviews and student exercise solutions were used as sources of
data. These are described in more detail below.

Pre-Test. Before the course began, the students were tested for their knowl-
edge of Lisp and programming concepts in general. The written pre-test was
administered to them to collect background information and to insure that they

suonoun,] @

‘doo] uLIg-[eAT-prIY @
(I asn Aya pue ‘dsr sLIEYA @

:alom [RLIOIN 21 jo sordoy Ay,
"SINOY AL Ul PRIRISBW 2q A[[RULIOU
pmoa ueyy soidol FurSuajeyo 210w Auvw 0] PAdNPONUL UG ALY AJUIB1I2D
pinom £2y1 ‘[[e 3t peal L2 J] "01 paiinbal jou a1am Inq ‘[BLIIEW ST JO [[B pEal
aARy pInoa Aay] siuapnis Suruurdeq 01 Sununep aq YU OIYM “T9A0D PNOM
asanod dsi my e soidol Jo aSuel i) palaacd [eHoIN] AFed-auTu Jouq ayj,
sojdwexa apduns Aq pamoj[og sem 3t paureidxa
sem 1da0U02 B 20UQ “I19)0 Yord U0 PIng O] Se 0s 1opio ue ul paure[dxa atam
$1d20u0d Y0OQIXa] B 0] JE[IUIIS SeA [PLIOIN 3y Jo Jeuuio) ay], -afensue] Juaurdo
-[oAap uoneardde ue sv dsi jo sefeiueApe palsi] UONINPONUL [FUOHEALOW Y
-ds1] Sutuiea] yna sjuapms ay) pie 01 ySnoua spo[dwod
104 ‘swajqold 251919X3 Ay} SA[OS 01 JOU 01 §B 08 UdNLM sea] “1aded uo papiaoad
sem sponnsuod dsry gofew 2y jo uonejuasaid [euon v enoln | ds_r7

‘ua1jo smopurm d{ay a1} 0] 19Jal 0] pue ‘Iauuell
padud-jas © ur s1os wiejqoid a1 uo Niom 01 “dsITT UYim saA[ISWAY) JZLIBT[ILE]
01 K1essasou 1[2] A2U1 SB [RLIOINI 2} JO SMI[S8 PRl 01 palonnsul aram Ay,

*ds1 Suruiea] ur Jou ‘swa[qoid aurgoew JO asED A1
ur siauawiadxa 2y woiy diay aA19921 A[UO pinom A3y p[o1 21aM SJUIPMS YL
"$2S1019%2 2Y] 23§ 01 [BLIOINT 31
19A0 WIN 01 WAL 2010) 01 SPIRMYOR] SUIIE) $IS101aX2 dU1 01 pa[dels sem [eliomm
ay, -a[qissod Iaasuaym dioy 1aindwod 2yl asn 01 PaSLINOdUd AIdM SJUAPMIG
19§ 2S1219X UV PUR ‘I01P2 SOVIAT 241 10] 199ys aouaiajal yomb e ‘[erioin
ds1 JoLiq © JO PaISISU0D S[RLIAIRUL U], "S[BLIIELL SIN0D JO 138 AWES I UDAIS [[B
arom KAy ‘aSNOUW 2] ST O} MOY PUB PIROGASY) U0 sem £y INOQNI 341 1Y M
SE 1oNs ‘2SN 0 Paau pinom £y suoneiado diseq Ul pajonnsul Al SIUSPMIS
-dnoua3 aandepe-uou 21
JO SISQUISLE 219 _ LUOOT [BUNILIOD, SIY] UL SIS [["201Jj0 2TIR] B UL S[[BM JUIDJ
-jip 22141 Surory jes 22111 Jo dnoid auo sao1jjo ajeledas pey WO “ISYI0 YR Yiim
2SI9AU0D 0} papiwirad Jou PUE ISYIOUE JUO WOIL] PAIR[OSE 2I3M SIUSPNIS Y], "2A0qQw
§ uoNIAg Ul § ST Ul UMOYS SB INOAR] UIAIDS B Il SUOTIRISHIOM SOT[OqUIAS
U0 HOVOD YIm payiom sjuapnls ‘Apms sujl u] ‘SfelI9jeyy 8sinooald

aouaradxa
dsi] soud pey oym Sjuapnis Aue JRUTHID 01 Payse 21am suonsanb aiyroads-dst
'sdasuod Sunuweiford UCWIWOD JO SSAUIBME DINSBAW 01 PUB ‘Mauy S|Uap
-ms oy sofenSue] SutwweiSold yorym ysiqrisa 03 ‘aouatadxa Sunuwersord sno
-1a21d arn[RAR 0] SUONSaNb papn[out 1531 Ay |, “ds1 jo a3pamouy Furyiom ou pey

gLl (HOVOD) d13H H3LNdWOI IAILIVAV JAILINDOD

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 113

had no working knowledge of Lisp. The test included questions to evaluate previ-
ous programming experience, to establish which programming languages the stu-
dents knew, and to measure awareness of common programming concepts,
Lisp-specific questions were asked to eliminate any students who had prior Lisp
experience,

Precourse Materials. In this study, students worked with COACH on
Symbalics workstations with a screen layout as shown in Fig. 8 in Section 6
above. The students were isolated from one another and not permitted to converse
with each other. Some had separate offices; one group of three sat facing three dif-
ferent walls in a large office. All users in this “communal room” were members of
the non-adaptive group.

Students were instructed in basic operations they would need to use, such as
where the rubout key was on the keyboard and how to use the mouse. They were
all given the same set of course materials. The materials consisted of a brief Lisp
tutorial, a quick reference sheet for the EMACS editor, and an exercise set.

Students were encouraged to use the computer help whenever possible. The
tutorial was stapled to the exercises facing backwards to force them to turn over
the tutorial to see the exercises.

The students were told they would only receive help from the experimenters in
the case of machine problems, not in learning Lisp.

They were instructed to read as little of the tutorial as they felt necessary to
familiarize themselves with Lisp, to work on the problem sets in a self-paced
manner, and to refer to the help windows often.

Lisp Tutorial. A tutorial presentation of the major Lisp constructs was
provided on paper. It was written so as to not to solve the exercise problems, yet
complete enough to aid the students with learning Lisp.

A motivational introduction listed advantages of Lisp as an application devel-
opment language. The format of the tutorial was similar to a textbook; concepts
were explained in an order so as to build on each other. Once a concept was
explained it was followed by simple examples.

The brief nine-page tutorial covered the range of topics a full Lisp course
would cover, which might be daunting to beginning students. They could have
read all of this material, but were not required to. If they read it all, they would
certainly have been introduced to many more challenging topies than could
normally be mastered in five hours.

The topics of the tutorial were:

® What is Lisp, and why use it?
® Read-Eval-Print loop.
® Functions.

114 EDWIN J. (TED) SELKER

® Lists.

e Conditionals.

® MAP & LAMBDA,

@ Defining functions.

® Repeated computation; Iteration.
® Repeated computation; Recursion.
® Data structures; property lists.

® Data structures; DEFSTRUCT.

Exercise Sets. The exercise sets contained problems covering basic arith-
metic operations, list operations, conditional execution, and a small database
project. To avoid a ceiling effect (all or many users completing all exercises), the
exercise sets were intentionally longer than what a student could complete in the
time available. Solutions to the first nine exercises consisted of expressions com-
posed of built-in Lisp functions. Correct solutions indicated completion of exer-
cises. When the students finished these single-answer questions at their own pace,
they began the database project. The students were not told which Lisp functions
they should use, nor how they should construct the database.

Arithmetic problems introduced the concept of evaluation order, forcing the
students to understand that function names come first in Lisp s-expressions. For
example, one student, while trying to accomplish

(times (plus 5 5) (plus 2 2))
was observed trying
((plus 5 5) times (plus 2 2))

but was able to understand the problem with the aid of COACH. The system
instantly recognized that an error was being made and popped up an attention-
grabbing error message in the immediate help window. When this error message
was noticed, the student was able to use the COACH on-line help to figure out
the problem in the model of evaluation used to construct the statement. The
student was able to understand the order of evaluation problem and fix the
operator/argument order in the solution.

The list operations required for solutions to the exercises included CAR, CDR
and CONS, the concept of nested lists, and QUOTE, The students were asked
to create lists of varying degrees of difficulty. The simplest was a single level list
(1 2 3), and the most difficult involved a multiple level list that required an
understanding of quoting.

A conditional statement was required to solve one of the exercises. The task
required the student to cause the computer to print yes if a certain element was
contained in a list. Students could have used COND and iteration or recursion to

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 115

solve this problem. An easier approach using the MEMBER function could
simplify the solution.

Unlike earlier problems, students had to write their own functions in solutions
to the database project exercises. One might expect students to use the simplest
data structure, a list, or more rarely, property lists, the first time they need
accessor functions, The tutorial covered these data structures, and the sophisti-
cated DEFSTRUCT macro as well. Surprisingly, most students chose to use
DEFSTRUCT instead of lists or property lists, all of which were covered in the
Lisp tutorial. The reason most students gave for this choice of using DEFSTRUCT
was, “It does everything for you.” This indicates that they understood the value of
a macro that writes functions the student would normally have to write,

The database problem was worded carefully to segment the solution into six
small user-written functions. For example, the students were asked to write a
function to add a person to the database, and to write a function to retrieve a
person’s phone number from the database. This allowed a direct measure of
productivity by the number of functions written.

Analysis of student solutions was used to compare productivity of the two
groups. In addition, quality of user solutions was evaluated. Students’ code was
examined for appropriateness and sophistication of Lisp functions used, use of
variables and condition checking as well as overall style.

Comment Sheets, During each of the five one-hour sessions, the students
were given a comment sheet to record impressions. They were instructed to write
as much or as little as they chose. The following questions were asked on the
comment sheet:

(1) How often do vou look at the help screen while solving a problem?

(2) How helpful is the help screen?

(3) How helpful is the COACH window system, as compared to a line-based
interpreted environment?

(4) Observations about COACH? (Answers from this question were evaluated
for perceived value or rating of the COACH environment.)

(5) Observations about Lisp? (Answers from this question were evaluated for
perceived utility of the Lisp programming language.)

(6) What problems are you having?

(7) What problem are you working on?

(8) What is your motivation to learn Lisp? (Answers to this problem were
given on a scale of one to ten.)

To compare the answers of the two groups, all the written answers were
analyzed and coded as varying from zero to five. Two readers evaluated each
answer and assigned it a value without knowing which group it came from. These

116 EDWIN J. (TED) SELKER

numerical values were used to evaluate the likelihood that the two groups had the
same experience with the system (see Table VI and Fig. 11).

Interviews. Near the end of the course, six randomly chosen students from
each group were interviewed for a few minutes on audio tape while they were
working. The important question asked was:;

@ What do you find most helpful while solving a problem: the help screen, the
selectable menus, or the tutorial?

Post-Test. At the end of the user study, the students were given a post test. To
measure the amount of Lisp learned by each student, questions covered the same
material as the pre-test. In addition, questions about specific feelings toward
COACH and Lisp were posed. Although similar to the comment sheets, these
questions were worded differently to reveal more about the students’ personal
views.

8.2.2 Experimental Data and Analysis

The following sections give detailed descriptions and analyses of data taken in
the study. The data recorded came from the pre-test, comment sheets from each
day, saved exercise solutions from each student, verbal interviews of students
during their sessions, and the post-test taken after the course was completed.

Pre-Test. The pre-test showed that all students selected were experienced
programmers, but had no prior Lisp experience. Answers to the Lisp-specific

TABLE VI

DATA COLLECTED FROM THE COMMENT SHEETS

Question Manual Adaptive

(Answers on a scale of 0-5) Mean Mean p-value
Rate Lisp as a programming language. 1.90 3.36 0.01
How often is the help screen consulted? i.16 3.91 0.04
Rate COACH as a learning environment. 1.97 297 0.05
How helpful is help screen? 2.44 3.20 0.11
Is COACH better than a line-based environment? 3.31 349 0.70

Notes: This shows that the students using the adaptive version of COACH liked Lisp more than
the other group. consulted the help screen more often, and rated COACH higher as a learning
environment. Although the students using the adaptive COACH tended to find the help screen
more helpful than the other group, the difference was not significant. Notice that both groups
rated COACH as better than a standard line-based environment. In the above table, p-value is the
probability that the means in two samples are the same. This data is shown graphically in Fig. 11.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

Rate Lisp as a programming language

How often is the help screen consulted?

Rate COACH as a learning environment

How helpful is the help screen

Is COACH better than a line-based environment?

[|
0 1 2 25 3 4 5
B automated adaptive help group

[0 manual user requested help group

FIG. 11. Graphical depiction of comment data from Table VI.

questions showed that, except for the simplest cases, the students were unable to
answer Lisp questions by guessing,

Saved Exercise Solutions. The COACH system internally stores infor-
mation about each user. This internal representation is the student’s adaptive user
model (AUM). At the completion of users’ work sessions, COACH creates two
files. The first contains the user's work (Lisp code), and the second contains the
user model (usage data for determining the level of the user's expertise for spe-
cific learnable units). Unfortunately, user model files were not kept for manual
help students.

The students saved work and their saved user models showed that all students
had finished the eight introductory exercises, i.e. those exercises which did not
require defining functions. This was followed by a database project requiring
students to write functions.

The comment sheets indicated that all the students had begun writing functions
for the database project by the last session, Examining their work showed
surprising differences in the percentage of the ten database project functions the
students in the two groups had actually completed. The users of the adaptive
system wrote an average of 2.5 functions, as compared to 0.5 for the users of the

118 EDWIN J. (TED) SELKER

nonadaptive system. No user of the nonadaptive system wrote more than two
functions. This is the most significant result of the study: on the average, the users
of the adaptive system defined five times as many of the functions required in the
data base project. In addition, the style and quality of functions written by the
adaptive system users were much better than that of the control group.

One user of the adaptive system wrote a function which demonstrated aston-
ishing progress for five hours of experience. This function, included below.
demonstrates an understanding of parameters, scoping and formatting, as well as
boundary checking, DEFUN, and lists.

(DEFUN add=person (name phone Llang)
(COND
((MEMBER name USERS))
((EQUAL USERS nil)
(SETQ USERS (LIST
(LIST name phone lang))))
(T (SETQ USERS (CONS
(LIST name phone lang) USERS)))))

Comment Sheets. At the end of each day, the students were asked to fill
out a comment sheet. The data from the comment sheets are the students’ ratings
of various aspects of the course. The values vary from zero to five, zero being the
worst and five being the best. The staristical analysis was done using a two-tailed
p-test, to determine the probability (p) that the mean rating of the users of the
adaptive system was different than the mean of the control group. This was done
using Welch’s method (Brownlee, 1984) (see Table VI). The strongest result con-
cerned users’ ratings of Lisp as a programming language. The users of the adap-
tive system indicated that they had a higher regard for the Lisp language: the
means of the answers for the two groups have a 0.01 probability of being the same
as each other, giving a 99 % probability that the adaptive help group had a higher
regard for Lisp than the control group (p = 0.01). The question, “How often do
you look at the help screen while solving a problem?” showed that users of the
adaptive system used the help screen more often (p = 0.04). The results from the
question, “How helpful is the COACH window system, as compared to a line-
based interpreted environment?” showed that both groups thought the COACH
environment was an improvement over a standard interpreted environment. The
mean rating for the question “How helpful is the help screen?” seemed to be
higher for the users of the adaptive system; however, with the study sample size it
did not prove to be significant (p=0.11). This is probably because it is a hard
question to answer. The question might have vielded better data if it had asked the
students to compare the help screen to the tutorial or some other form of help.

Interview Tapes. Students were interviewed on audio tape during their

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

work sessions with standardized questions. Six randomly chosen individuals from
cach group participated in these interviews. The data collected from the interview
tapes show differences in the ways the two groups utilized help while solving a
problem (see Table VII and Fig. 12). All users reported the usefulness of menus
to ask for help. The manual user-requested help group received help messages for
syntax errors, the kind of help for which an interpreted Lisp environment is
known. They reported that this computer presented help was not particularly
useful. All users of the automated adaptive help reported finding it useful. While
only one member of the manual group reported making use of the tutorial packet,
all interviewed members of the adaptive group reported the tutorial useful. While

TABLE VII

STUDENTS USING DIFFERENT METHODS TO SOLVE PROBLEMS

Learning malterials used Manual Adaptive

Asks COACH for Help 6 6
Uses COACH presented Help 0 6
Refers to tutorial 1 6
Uses trial and error I 0

Notes: Of six students interviewed in the manual group and
six students interviewed in the adaptive group, the adaptive
help group found more of the support materials useful. This
data is shown graphically in Fig. 12

—

Use trial and error to solve problems

F

Refer to tutorial materials

Use computer presented help

Use menus to ask for help

I | T I
1 2 3 4

1)

=]

6 Individuals

W automated adaptive help group

O manual user requested help group

FIG. 12. Number of users reporting use of each method 1o solve problems. Data recorded
from the six people interviewed from each of the two groups from Table VIIL.

120 EDWIN J. (TED) SELKER

one member of the manual group reported relying on trial and error to solve
problems, none of the adaptive group reported using this technique.

In Fig. 12, it is notable that students in the adaptive system group used all the
different types of help available to them, while students in the nonadaptive group
did not.

Post-tests. A post-test was given to the students at the end of the course. The
post-test asked the students how comfortable they felt with the Lisp language. The
data collected from the post-tests show the difference in comfort levels between
the two groups. Out of the six post-tests completed by users of the nonadaptive
group, two students felt somewhat comfortable and four were uncomfortable. Of
the nine post-tests completed by users of the adaptive system, three students were
comfortable, five were somewhat comfortable, and one was uncomfortable (see
Fig. 13).

8.2.3 Discussion

The data demonstrate differences in self-assessment and performance between
users of an adaptive automated help system, as compared to users with manual
help.

100 —

90 =

80

. O Comfortable

0 with Lisp

60

50 B Somewhat comfortable
with Lisp

40

30 - B Uncomfortable
with Lisp

20

10

Percent

Automated Manual
adaptive user requested
help group help group

FiG. 13. Comfort levels reported by students at completion of course. Percentages are calcu-
lated for nine students from the adaptive automated help group and six students from the manual
help group who returned the post-course questionnaire.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 121

The terse nature of the tutorial purposely masked the quantity of information
with which the users were familiarizing themselves. The amount of knowledge to
which the students were exposed was close to what students might be expected to
master in a full semester Lisp course.

Although the students were sometimes frustrated, they learned a lot of Lisp.
The goal of requiring them to use the help system to solve their problems was
achieved. Even though large performance differences were found between the
groups, the nonadaptive group still performed extremely well. When compared to
the amount of work a novice might accomplish in a typical learning environment,
it is clear that the COACH environment was a significant aid. Even the nonadap-
tive users described their interface as an improvement over the usual tools that are
available (Fig. 11).

The pressure of learning so much Lisp in such a short time without any human
teacher help was a challenge. Although all students completed the study, one of
the manual help group students required extensive persuasion to continue after
the third day, A comparison of the full study to the pilot study showed that the
pressure of the amount of material to be learned was decreased by the self-paced
presentation.

8.3 Future Work

This study has shown that an adaptive automated help system can increase user
performance. Many important questions remain unanswered (see Section 10).

To simplify the user study, the most experimental rule was eliminated from the
COACH adaptive user model. A small number of adaptive rules were used to
change the quantity and quality of help given to a user for each function, token,
and concept. It is important to examine the various kinds of adaptation and knowl-
edge bases in such an adaptive user interface. The value of each individual rule
should be studied.

COACH also records user information concerning required and related know]-
edge. As described in Section 6.3.2 rules can use this information to describe
alternative solutions or point to related learnable units when a user is struggling,
For simplicity, the “encourage exploration’ presentation rule was deactivated for
the study. Additional rules could interject syllabi on which to tutor a user in such
a situation (see Section 10). It would be interesting to study the value of such
facilities. which may distract students from their task.

This study tested the effectiveness and importance of an adaptive system with
Lisp-illiterate users. The ways in which COACH will be helpful to experts is
probably quite different from the ways in which it will be helpful to novice pro-
grammers. Experts will benefit from COACH’s “Level 3" examples and “Level
4” complete syntactic descriptions of functions. COACH leaves experts alone
when they are working on something with which they are experienced. These

122 EDWIN J. (TED) SELKER

experienced Lisp programmers will benefit from the fact that COACH keeps
track of context dependent situations, scope, and undefined variables, while
exposing the user to the relationship between functions and concepts. Novices, on
the other hand, find the changing adaptive help for functions and tokens quite
useful for learning the syntax of simple functions and token types. While studies
showing the different benefits for different users would be straightforward, they
were beyond the scope of this experiment,

8.4 Conclusions

In this study, significant differences were found between students who used
automated adaptive COACH help and students who had only manual COACH
help.

While the responses to the comment sheet question concerning motivation
during work sessions did not show a difference between the two groups, other
indicators did. One might expect the group with less computer support to make
greater use of the paper tutorial; however. the converse was true. Both groups had
the same access to the paper tutorial and on-line help. While the group with
manual COACH help only valued the user-requested help, the automated
adaptive help group utilized all available materials, the Lisp tutorial and
user-requested COACH help as well as automated coach help (see Fig. 12).
Students from the adaptive group reported feeling more comfortable with
Lisp and also completed many more of the exercises than the control group
(see Fig. 13),

The automated adaptive help system succeeds in improving productivity and
raising motivation to use available materials.

This section has described efforts to evaluate adaptive user help systems. The
study raises many Interesting questions for future research. The following section
discusses these in more detail.

9. Development Status

The OS/2 WarpGuides product is based on a version of COACH rewritten in
C++ and extended to support a graphical user interface. This graphical adaptive
help system was written by Ren Barber with help from Bob Kelley, Steve Ihde
and Julie Wright. The product uses innovative dialog masks and highlighting to
draw attention to the graphical features being coached. Text balloons alongside
but not obscuring the dialog box describe these features. In prototype versions,
animation and sound have also been explored for augmenting the masks and text.
These content types have been implemented with wav files for sound and a home
grown animation language called GAS (Graphical Animation System).

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

9.1 Animated Help

We began analyzing the GUI to create graphical help that would best match the
GUI interface using the elements of visual language formalism (Selker and
Koved, 1988). Objects on the display define an alphabet of the graphical lan-
guage. The operations that happen on them are the graphical syntax. For example,
a folder is a terminal symbol, a double click is a parameter that is sent to it when
the user double clicks. This syntax is interpreted by the system to cause the
“open” semantic operation to occur. Desci‘ibing operations in this way helped us
to map these operations to animated presentations.

9.2 Slug Trails

Our first attempt to create example help to teach direct manipulation in a graph-
ical user interface used a pictorial representation of a mouse, with buttons that
changed color according to their state, as in (Goldberg and Robson, 1983). A pro-
cedure was shown in a static form by arcs between states of the mouse. This
resembles the form of animation seen in comic strips. Temporal animation of the
motion of the mouse and other objects made this seem more realistic. However,
this did not leave a persistent record for the user to review of the important actions
that had been shown in the animation. To make the animation easier to review and
more concrete in the mind of the user, we developed “slug trails”. The idea behind
slug trails was to augment an animation showing a task with a persistent after-
image portraying the important actions. For dragging, the right button on our
mouse would go down (shown depressed), the icon would be moved across the
display leaving a trail of dots or other graphical debris behind it, then the button
would go back up (shown normally). Remaining on the display were the impor-
tant syntactic graphical actions. The icon at its first location, the mouse in its first
important mode with the cursor on the icon, the dots showing where the icon
moved and the final location with the final state of the mouse all remained on the
display when the action was over. In this way, a movie also has a static presenta-
tion as a reminder of the important events that occurred in the movie. This tech-
nique was relatively effective when prototyped by creating a graphical program
for OS/2 called ANIMATE and a language called GAS for writing such anima-
tions co-authored by John Haggis and Ron Barber. The animation was supple-
mented with text explaining “what” was being shown and “how™ to do the
graphical action. These elements work together to teach concepts. Breaking down
the graphical procedure in this way made interpreting the actions concrete, These
animations were played on a background image of a display screen. Our first
problem with this, like other help systems, was that a tremendous amount of
display area was devoted to this presentation. We sought ways to convey the same
information with less dedicated space.

124 EDWIN J. (TED) SELKER

Coach Graphical Help System for WorkPlace

Drag and Drop - Level 1
'‘Drag and drop' moves a graphical object on the screen.
10> To move an icon, place the pointer over the icon.

Hold down mouse button 2 while maoving the mouse.
Release the button to ‘DROP’ the icon.

FIG. 14. The first frame of a “slug trails” animation, with the explanatory text which

accompanies all frames.

FIG. 15. The mouse moves to the top of the folder.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

FIG. 16. The right mouse button is depressed, starting a drag.

9.3 lIcon Dressing

After working with the slug trails for some time, we began exploring
approaches that did not consume large amounts of screen real estate or draw
focus away from their task. We wanted to develop lightweight presentation
mechanisms that did not disturb the user’s task. To address these problems, we
defined a new idea called “icon dressing”. Icon dressing is a form of graphical
annotation which distinguishes an icon by outlining or otherwise embellishing
it. This approach dresses it up to describe a likely operation that can be
performed with it. We invented a vocabulary of small animations to prompt the
user about appropriate actions involving the icon. These small animations focus
the user’s attention on the actual icon and what can be done with it. The
icon dressing accomplished its goals; however, our prototype tended to require

more interpretation by the user and was not flexible enough for general GUI
assistance,

9.4 Cue Cards

We began designing a graphical presentation window with goals of associating
information relative to an object temporally without covering up the interface
with user controls. We realized this goal with the introduction of “Cue Cards”,
Distinctive coloration (typically yellow) and appearance (rounded corners, small,
light, proportional fonts) like bubbles, together with minimal controls and quick

126 EDWIN J. (TED) SELKER

.

FIG. 18. In the last frame, the “slug trails” shows all the important steps of the action: click,
move, and release.

response gave Cue Cards the feeling of supplementing or annotating the user
interface without being so much a part of it. Cue Cards associate with something
spatially and with color. We found that this feeling greatly contributed to the
usability of our help system.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

FIG. 19. An animated “icon dressing” shows the user how to move by dragging.

9.5 Guides and Masks

Dialog boxes are used to present some of the most complex and difficult system
controls. One of the more useful applications of a GUI help system is to aid users
with dialog boxes. Dialog boxes enhance the productivity of experienced users by
presenting many options in a compact way, but their complexity can be frighten-
ing to the novice. Assistance agents such as Wizards (Mic, 1995) sidestep this
problem, making it easier for new users to do more complex tasks such as
installing printers and configuring the system, but they don’t help the user learn to

e ,-
=y e A e g O

(- W ke TN P
TS0 PO G AN eay

S T
g,

Finding a file 8 |« »

Type as much of the name as you know, and use an asterisk [¥] for the rest,
Type my* or *file, to find things that begin with my or end with file, respectively.

FIG. 20. At lower levels of expertise. attention is guided by highlighting important areas of
the dialog and de-emphasizing the features less relevant to the learnable unit. No functionality is
lost; the mask does not disable any features.

128 EDWIN J. (TED) SELKER

I_,:C:]'i = = r

r
Ix

| |
Start Folder: [ea|l Local Drives>

Name:

-Options; — T e

V| Search All Subfolders I Err—
: More ...
_| Save Besults .

Find : Cancel l Help !
Finding a file & <>
Type the name of the file, folder, or object,
Tofind files of one type, use an asterisk: for example, *.BMP locates all bitmap files.

FIG. 21, As the user gains experience, the masks are discontinued, and more expert help text
15 provided.

use the native interface. Qur idea was to make annotations that would vary the
complexity of the dialog box interface according to the needs and understanding
of a diverse user population. We wanted to encourage the user to interact with the
subset of the interface that is important and to default the rest. Specifically, we
defined masks. Masks are translucent overlays that shroud some parts of the user
interface. Some parts become highlighted, and other parts are unaffected, accord-
ing to their relevance. A “guide” comprises a sequence of masks which steps the
user through a sequence of operations necessary to perform a task. We created a
technology for defining and presenting masks and began testing various masking
strategies. Masks and guides are intended to focus the user on the actual interface
they will eventually have to master. The masks provide guidance without restrict-
ing interaction with the system. The masking can be progressively reduced
(peeled away) revealing more of the user interface as the user becomes more
familiar with it. Even if a user’s activity diverges from that suggested by the
guide, the COACH system continues to show a cue card and mask for the parts of
the user interface that a person is using. These techniques give a flexible expres-
sive presentation medium for our proactive adaptive help system.

9.6 Hailing Indicator

The proactive nature of COACH requires a way to communicate the avail-
ability of help information to the user. To accomplish this we added the “hailing

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 129

indicator”, a small icon which may appear in the title bar of a dialog box. If a
hailing indicator is shown, it has two distinct appearances: one notifies the user
that a single guide is available for the current (unambiguous) task, the other noti-
fies the user that guides are available for more than one possible task. When the
COACH user model shows that the user has little recent experience with a task,
COACH presents a suitable guide. Otherwise, just the hailing indicator will come
up, reminding the user that help is available. Clicking on the hailing indicator for
a single guide will bring up the guide. The multiple hailing indicator will bring up
a guide menu, so the user can indicate which guide is relevant.

9.7 Sound

Finally, we are experimenting with the use of sound to supplement the other
techniques. The use of sound can be particularly valuable to introduce the inter-
face and the help mechanisms, creating the initial associations between kinds of
help and their uses, and also between icon dressing animations and their mean-
ings. The adaptive technology of COACH enables the sound annotation to
become less verbose or disappear when it is no longer useful.

9.8 Summary

Widgets, graphical presentation techniques, and audio presentation techniques
are a large and exciting field. Our work has emphasized presentation techniques

Name: H
Start Folder: I<.f-‘-.li Local Drivesy hd _Lacaie N
~Options:——— e w

| i Search Al Subfolders WM ;é — 7{
- [_I Save Results _More... |

| Cancel Help |

FIG. 22, Users can click COACH/2s hailing indicator (in the upper left corner) to activate
the advisory agent.

129

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

indicator”, a small icon which may appear in the title bar of a dialog box. If a
hailing indicator is shown, it has two distinct appearances: one notifies the user
that a single guide is available for the current (unambiguous) task, the other noti-
fies the user that guides are available for more than one possible task. When the
COACH user model shows that the user has little recent experience with a task,
COACH presents a suitable guide. Otherwise, just the hailing indicator will come
up, reminding the user that help is available. Clicking on the hailing indicator for
a single guide will bring up the guide. The multiple hailing indicator will bring up
a guide menu, so the user can indicate which guide is relevant.

9.7 Sound

Finally, we are experimenting with the use of sound to supplement the other
techniques. The use of sound can be particularly valuable to introduce the inter-
face and the help mechanisms, creating the initial associations between kinds of
help and their uses, and also between icon dressing animations and their mean-
ings. The adaptive technology of COACH enables the sound annotation to
become less verbose or disappear when it is no longer useful.

9.8 Summary

Widgets, graphical presentation techniques, and audio presentation techniques
are a large and exciting field. Our work has emphasized presentation techniques

T

| Narme: I g
| e T LI LI T ——— - —
© Start Folder. <40l Local Drives> <] _Llocate... |
~Options:
! Search All Subfolders | Maan |

| _I Save Results

Cancel

FIG. 22. Users can click COACH/2’s hailing indicator (in the upper left corner) to activate
the advisory agent.

130 EDWIN J. (TED) SELKER

for communicating temporal and associated information while not distracting a
user from the tasks in a GUIL In our search for such techniques we have developed
slug trail animations, icon dressing, cue cards, masks guides, and sound for pre-
senting adaptive proactive help. Slug trails are a modality for graphically demon-
strating an example of a procedure. Icon dressing accomplishes the same thing
with much less visual real estate at the cost of design flexibility and versatility.
Masks are a technique for simplifying the presentation of any user interface,
focusing a user’s attention on specific things. Cue cards are lightweight, versatile
help presenters designed to be associated with but not cover up user interface
function. Recognizing the strengths of each of these techniques has guided the
choice of the COACH/2 help presentation mechanisms.

A version of COACH/2 ships with the OS/2 operating system starting with
release Warp 4, under the name WarpGuide. A check-in procedure identifies the
user and selects the appropriate AUM from a database of users. An authoring tool
has been used for experiments with using COACH-based help technology with
application programs. Figure 23 shows the authoring tool in use. Three windows
are open: a tool bar at the top, a text-input window on the left, and a dialog box
being annotated on the right. The dialog box appears as it would look to the user,

3@l |20 cran BliEre]

| Coach Guide Adthor

Mame: » t * >
: Enter_a_filename

StatFobler KAl DTwes s R Search for a fils object 4| l
- : 7|

el] Use an asterisk (%) for a -l Whot; 2 ; 4
: |

ey

s wikcioarcl Hoi

o InGen M
= ¥ View Mode

Carced <&y Give a slightly morecomplex = -
Finding & File LB PGS ‘
Search tor & fils ohyect 1

E.ise an asterisk [*] for & wideard. | Dismiss

Example: conlig.”

FiG. 23. COACH/2 WYSIWYG authoring tool.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 131

with masking and highlighting to emphasize a region for entering a file name.
Below the dialog box is the help text as it would be presented to the user.
COACH/2 monitors user events in the operating system’s event queue, there-
fore COACH-based help can be added to any application that uses the operating
system’s API without modifying that application. However, supporting the AUM
requires the application to provide a success/failure signal and an identifier for the
step within a task where a problem was encountered. Without this support,
COACH relies only on how a user “touched” a task step to update the user model.

10. Future Research Goals

COACH was originally developed as a research tool to explore teaching
approaches, adaptive interfaces, and learning paradigms. The User System
Ergonomics Research (USER) group at IBM Almaden Research Center is cur-
rently using COACH to explore several new ways of using and expanding the
technology. The following is a short list of directions that are or could be followed
using COACH as a research vehicle:

® Further experiments could establish the validity of particular /nstructional
techniques in specific situations.

® Specific adaptive mechanisms should be more fully studied to establish
their impact on the user.

® Currently COACH gives help advice addressing user problems it identifies.
The use of COACH to actually perform the solutions to these problems as

an assistance agent could save users from rote work, although the impact on
learning should be studied.

® Multi-media help such as video graphics and audio are being tested with
COACH/2. Experiments should be run to show if and where users derive

more value from multimedia prompts and visual presentation than from text
balloons.

® Tutorial curricula is being added to COACH to make it useful for teaching
a syllabus.

As well as being a research platform, COACH is already intrinsically useful as
a coaching interface. Development work with COACH;/2 is being performed on
popular operating systems (0S/2, Windows95). Authoring tools currently under
development facilitate support for COACH on applications, which could be used
to create a uniform help system for the entire environment experienced by the user.

10.1 Future Research

This section discusses future directions for COACH research in more detail.

132

(1

(2)

EDWIN J. (TED) SELKER

Evaluating instructional techniques.

Various basic instructional techniques can be embodied in a computer
coaching system. In a useful exploration of the goals and techniques
of teaching, Alan Collins and Albert L. Stevens (Collins and Stevens,
1983) put forward a list of ten such techniques demonstrated in computer
teaching systems:

(a) selecting positive and negative exemplars;
(b) varying cases systematically;

(c) selecting counter-examples;

(d) generating hypothetical cases;

(e) forming hypotheses;

(f) testing hypotheses;

(g) considering alternative predictions:

(h) entrapping students:

(i) tracing consequences to a contradiction;
(j) questioning authority.

A fruitful area of research would be the formal evaluation of these
instructional techniques. It remains to be proven which are most effective,
which can be used together, and, most vital, which are appropriate for a
particular situation. COACH would allow teaching techniques to be tested
objectively. They would be embodied in coaching rules.

How do adaptive mechanisms impact the user?

The adaptive strategies present in the COACH system were arrived at by
informal experimentation. Guinea pig users worked with the system to test
various adaptive and presentation strategies. A researcher can change rules
to alter the system’s coaching actions and strategies (see Section 7).
Formal studies to determine which strategies are best could be set up to
address issues in education, cognitive psychology, and cognitive science.
Many questions could be easily tested. For example, is it better, when
users are first exposed to a performance help level, to show them syntax
and description, or would it be better to simply focus on an example?
Presently the system waits to show related knowledge until the user has
shown experience with the learnable unit. The current hypothesis is that
too much information might overwhelm a beginner. A different hypothe-
sis might state that the novice should instead be provided as much infor-
mation as possible when just getting started. Do tasks that are done
frequently get a greater benefit from an advisory style of help, while tasks
which are rarely done get less value from the teaching aspect of the help
system? Exploring such questions in more detail would give insight to

(3

(4)

&)

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 133

better understand student cognitive models. COACH 1is designed to
explore such issues.

The use of agents in an adaptive teaching interface,

Should the computer tell a user how to do something, or should the com-
puter do it for them? An advisory agent that offers advice which the user is
free to ignore is less obtrusive than an assistant style agent which imple-
ments the advice. In an assistance agent paradigm, when the computer
knows something needs to be fixed by a user (e.g., inserting an open paren-
thesis), the computer takes control and types the solution. For example, in
such a paradigm, when the computer identifies some way of simplifying
what a user needs to do, it might create a macro so that the complex utter-
ance can be described in a simplified way. The computer, then, has built a
new instruction to come to the aid of the user. The computer is building a
private, helpful set of tools for the user, a language the user and the
computer both know. While the things the computer tries to do to the
user’s interaction with a program are what the user really needs and wants,
and to the extent that the user can easily ask for advice or the computer can
recognize the need for it, an assistance agent can be helpful.

The original COACH interface did not implement assistance agents.
The hypothesis was that if users do not have to perform things themselves,
they will not learn them. Another reason for not including assistance
agents in the coaching paradigm was based on the hypothesis that the
private interface that assistance agents provide could be difficult for a
teacher or colleague to understand when the computer failed to be of help.

Integrating multi-media help.

Hardware and demonstrations integrating video and computers are becom-
ing popular. An early work by Steve Gano, “Movie Manual”, integrated
text, menus, and video to demonstrate automotive repairs, such as chang-
ing the oil (Gano, 1982). Audio can capture attention, animation can
demonstrate graphical actions, 3-d graphics can make help distinct from
the user interface. Visceral media can attract attention and aid memory of
learning experiences without being confused with other graphical devices.
Experiments should be done to show whether these other media improve
learning and comprehension, and how they are best used to complement
other teaching modalities.

Integrating tutorial curricula with COACH.

COACH demonstrates an AUM-based teaching aid based on the assump-
tion of a goal-directed user. While most of people’s lives are spent trying
to achieve their own goals, we all go through a period of schooling—a

134

EDWIN J. (TED) SELKER

time when others define our goals. The coaching interaction style supports
a user’s goals, leaving any “syllabus” or goal definition up to the user or a
human teacher. _

COACH)/2 has guides as well as learnable units. A guide is composed of
a single thread or path through a series of learnable units. Features can be
defined to trigger advancement to the next learnable unit in the series, or
the user can explicitly call for the next unit using the navigation buttons on
the cue card. Multiple guides can share the same learnable units, e.g. the
learnable units for naming a file would be part of guides for both opening
a file and saving it under a new name. The author clicks on buttons to indi-
cate the level of user knowledge appropriate for the learnable unit (four
levels are supported) and the type of help information being provided
(what, how, or general information).

The architecture could easily support more directed teaching materials,
as demonstrated in systems like the Lisp Tutor (Reiser et al., 1985). The
network of relationships between learnable units in COACH could be
made to work with a check list (an overall basis-set, see Section 6.3).to go
through teaching materials in a sequence. Specific syllabus teaching mate-
rials with assignments and problems could be represented in domain
knowledge frames (see Section 6.3.1). Adding a rule “what-to-teach-next”
to the COACH rule set (see Section 6.4), could interface between the
syllabus and the AUM to select appropriate teaching materials.

Such a system would have curricular goals, a syllabus. and the ability to
evaluate a user relative to these goals. In addition to giving programmed
lessons as other tutors do, such a system would be able to follow and help
users in their programming, even when they were not doing exactly what
is set forth in the curriculum.

Unlike a conventional syllabus, COACH allows the user to follow their
own path through the material rather than enforcing a particular sequence.
Adding tutoring techniques to COACH's presentation technology would
allow for the kind of directed learning that syllabi create without requiring
users to work through more of it than they need.

10.2 Future System Development

As well as being a research system, COACH has been used in real work.
Below, two efforts are outlined which are making COACH more useful and
available to users.

(1) Integrating COACH into standard work envirommenis. COACH/2 is inte-

grated into the OS/2 offering applications automatically; however, certain
more ambitious integration projects could make the COACH architecture

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

more widely available:

(a) User interface environment aids. Rules could be added to COACH
which provide already well-known agents. As demonstrated in Do
What [Mean (DWIM) (Teitelman and Massinter, 1981), the system
could correct spelling errors and correct variable naming or function
naming. Assistance agents could also search for conflicts in other func-
tions, similar function definitions, fix data type uses, etc. Assistance
agents could also create solutions for equations and allow users to work
with alternative representations, as demonstrated in the Mathematica
(Wolfram, 1988) mathematical problem solving and visualization
System.

(b) Efficiency improvements. Improved data structures help the
COACH/?2 system. The help text, rules, and user interface grammars
of the Lisp implementation have been replaced in the COACH/2
implementation with a hashed object database. This greatly improves
speed-of-access data structures for increased performance for giving
help in standard GUI environments.

Improved algorithms also make the COACH/?2 system more robust.
The system caches text that is relevant to the particular user’s AUM,
leaving unneeded help information in files on disk. The COACH/2
system is approximately 0.5 megabytes of object code. Because of
careful use of memory, it keeps its working set to this size as well.
Currently, COACH/2 ships with about 1 megabyte of content.

In extremely complex programming exercises, identifying how to
parse a code segment can be difficult. A more adaptive scoping parser
could allow the COACH system to try multiple ways of parsing small
pieces of users’ work when users make changes.

(2) Porting COACH for use in different environments. Development work
with COACH/2 is concentrating on implementations for the OS/2 and
Windows95 operating systems, with the 0S/2 version being shipped as
WarpGuide with the OS/2 Warp 4 release.

Help support across different application environments raises interesting
possibilities for transferring AUM data from one domain into another. Some
of the AUM data that we have found easy to track and use in different parts
of a single domain could be generally useful across domains:

(a) User error rate. The help system could have a lower threshold
for questioning the accuracy of input by users known to be error prone.
For example, a low score for typing accuracy earned in the text editor

could cause the spreadsheet to be more sensitive to the entry of anom-

alous data, such as a four-digit number in a column of three-digit
numbers.

136

3)

“

EDWIN J. (TED) SELKER

(b) Slow learners. When a user is identified as a slow learner, the help
systemn could concentrate on teaching the basic functions, while avoid-
ing unsolicited advice on more obscure functions that may be confus-
ing to the user. By developing this metric across different applications,
appropriate help could be provided even on a user’s first exposure to
an application. The history of the user with other applications would
substitute for a history with the new application.

(c) Experimenters. When the help system recognizes that a user quickly
learns to use new features, it can be more forthcoming with hints and
shortcuts. On the other hand, if a user is a non-experimenter, these
helpful tips may be considered useless or annoying.

(d) Preferred modality of interface. Some users prefer keyboard input
rather than using a pointing device. Some users make use of function
keys, while others ignore them. Some users may have physical handi-
caps that make one modality difficult or impossible to use. A help
system that can recognize a user’s preferred style of interaction can
suggest features that fit within those preferences and avoid mentioning
features the user is unlikely to use.

Authoring tools. In the original system an author wrote the structure of
learnable units in a formal language. To facilitate support of COACH-
based help for applications, an authoring tool has been developed for
the OS/2 environment that allows a curriculum developer to describe
graphical syntax with a WYSIWYG point-and-click interface.

A user selects authoring tasks from the authoring tool’s GUI. It allows
them to create new guides, to identify new learnable units, to give these
guides and learnable units graphical looks, to edit and add content for
them, and to identify the relationships between learnable units. An author
selects the syntactic part of the GUI for which they want to create help and
uses the guide author to create content while demonstrating the actual use
of the thing to be learned. The authoring tool automatically creates the
COACH syntactic model, allowing it to notice when to give help on the
learnable unit. In this way the author defines a mask, features that show
through the mask, highlighted features, and a cue card for each learnable
unit.

A completely new implementation of the authoring tool is being devel-
oped in Java, to take advantage of the cross-platform portability of that
language.

Web implementation. COACH could be implemented for Web-based
applications. The interaction between the user and the advisory agent is
implemented as a client—server relationship in COACH. In our UNIX-
teaching COACH, the help agent ran on a different computer from the one

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 137

running UNIX. A Web-based COACH could have the same structure, in
which a COACH server could download applets to the user’s machine to
provide text, graphics, sound, and other forms of help information.
Alternatively, COACH itself could run only on the client in applet space or
as part of a proxy server.

A Web COACH could explain interfaces with complex syntax, such as
the wild cards and logical operators used to request information from
search engines. It could warn about unintended side effects, such as
buttons which download software and change the operation of a user’s
machine. If there are plug-ins or upgrades required to implement certain
features of a Web site, COACH could guide the user through installation
of the software. COACH could simplify Web page design because infor-
mation that isn’t relevant to all users would be hidden from view unless
and until an appropriate moment to present it occurred. COACH would
streamline access to the information content on the Web, by selectively
controlling the content seen by the user, as appropriate for the user’s
browsing experience with each site.

ACKNOWLEDGMENTS

This chapter would have never been completed without the tireless editing and dedication of Mark
Thorson. This chapter is based on my PhD dissertation, a document that many people, especially my
wife Ellen Shay and sister Diane Selker, worked hard to help me accomplish. Many people have con-
tributed to COACH since the original dissertation: Bob Kelley. Steve Ihde, Julie Wright, and John
Haggis worked with Ron Barber to create the COACH/2 implementation. As with any product, a large
number of people who worked hard to support the productization of COACH. Without Les Wilson,
Ashok Chandra, and Maria Villar, it would not have happened. Ron Barber's work stands alone. His
architectural work, long nights of programming, and leadership made the product happen.

REFERENCES AND FURTHER READING

Alexander, 8. M., and Jagannathan, V. (1986). Advisory system for control chart selection. Computer
And Industrial Engineering, 10(3).

Aronson, D., and Briggs, L. (1983). Contributions of Gagné and Briggs to a preseriptive model of
instruction. In Instructional-Design Theories and Models: An Overview of Their Current Status,
pp. 75-163. Lawrence Erlbaum Associates, New York.

Barr, A., and Feigenbaum, E. A. (eds.) (1984). The Handbook of Artificial Intelligence. William
Kaufmann, Los Altos CA.

Bereiter, C.. and Scardamalia, M. (1984). Learning and comprehension. In Information Processing
Demand of Text Composition, pp. 407-421, Erlbaum, Hillsdale, NJ.

Bonar, I.. and Soloway, E (1985). Preprogramming knowledge: A major source of misconceptions in
novice programmers. Human—Computer lnteraction. 1, 133-161,

Borenstein, N. S. (1985). The Design and Evaluation of On-line Help Systems. PhD thesis, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, PA.

Brehm, §.. and Brehm. J. W. (1981). Psyehological Reactance: A Theory of Freedom and Control,
Academic Press, New York,

138 EDWIN J. (TED) SELKER

Brownlee, K. A. (1984). Statistical Theory and Method in Science and Engineering. Krieger, Malabar,
FL.

Burton, R. (1978). Diagnostic models for procedural bugs in hasic mathemarical skills. Cognitive
Science, 2.

Burton, R. (1982). Intelligent Tutoring Svstems, chapter 4. Academic Press, New York.

Burton, R.. and Brown, I. S. (1982). fnrelligent Tutoring Systems, chapter 2, Addison-Wesley, New
York.

Campbell, R. L. (1989). Developmental levels and scenarios for smalltalk programming.
Technical Report RC15305, IBM T. J. Watson Research Center, Yorktown Heights, NY,
December.

Campbell. R. L. (1990). Online assistance: conceptual issues. Technical Report RC15407, IBM T, J.
Watson Research Center, Yorktown Heights, NY, December.

Curbonell, J. G. (1970). An artificial intelligence approach to computer assisted instruction. IEEE
Transactions on Man—Machine Systems, MMS-11(4),

Carbonell, J. G. (1979). Computer models of human personality traits. Technical report, Computer
Science Department, Carnegie-Mellon University, Pittsburgh PA,

Carroll, J. M., and Aaronson, A. (1988). Learning by doing with simulated intelligent help. CACM.
31(9).

Clancy. W. (1986). From guidon to neomycin and heracles in twenty short lessons: Orn final report
1979-1985. The Al Magazine, pp. 40-60, August.

Collins, A.. and Stevens, A. L. (1983), Instructional-design theories and models: An overview of their
current status. In Cognitive Theory of Inguiry Teaching, pp. 247-229. Lawrence Erlbaum
Associates, New York.

Conklin, J. (1986). A survey of hypertext. Technical Report STD-356-86, MCC, Austin TX,
October.

Corbett, A, T., and Anderson, J. R. (1989). Feedback timing and student control in the Lisp intelligent
tutoring system. In Proceedings of The International Conference on Artificial Intelligence,
pp- 64-72. 10S, Amsterdam.

Davis, R., and Shortliffe. E. (1977). Production rules as a representation for a knowledge-based con-
sultation system. In CHI "87 Praceedings. Vol, 8, pp. 15-45,

Ellis, T. O.. and Sibley, W. L. (1966). The grail project. Spring Joint Computer Conference, Boston,
MA. Verbal and film presentation.

Erman, L. D., and Lesser. V. (1975). A multi-level organization for problem solving using many
diverse, cooperating sources of knowledge. In IJCAZ, Vol. 4. pp. 483-490,

Feldman, D. H. (ed.) (1980). Bevond Universals In Child and Adult Developinent. Ablex, Norwood
NJ.

Fikes, R., and Keeler (1985). The role of frame based representations in reasoning. CACM, 28(9),
904-920, September.

Fischer, G., Lemke, A., and Schwab, T, (1985) Knowledge-based help systems. In CHI Proceedings.

Gano. S. (1982). Movie manual. Technical report, MIT Media Lab, Cambridge MA.

Genesereth, M. (1982). Intelligent Tutoring Systems. In The Genetic Graph. Addison-Wesley, New
York.

Gentner, D. R. (1986). A tutor based on active schemas. Computational Intelligence, 2.

Glaser, R. (1985). Thoughts on expertise. Technical Report AD-A157 394, Learning Research and
Development Center, Pittshurgh, PA, May.

Goldberg, A., and Robson, D. (1983}, Smalitalk-80: The Language and Its Implenentation. Addison-
Wesley, New York.

Grise, R. F.. Ir. (1986). ANGEL: A pleasant user-interface for an interactive computing environment.
Master’s thesis, Cybernetic Systems Department, San Jose University, San Jose, CA.

Heidegger. M. (1977). The Question Concerning Technology. Harper & Row, New York,

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 139

Hewirt, C. (1972). Description and theoretical analysis (using schemata) of planner, a language for
proving theorems and manipulating medels in a robot. Technical Report TR-238. MIT A.l
Laboratory. Cambridge MA.

Hewitt, C (1985). The challenge of open systems. Byte Magazine, pp. 223-342, April,

Hoperoft, 1. E., and Ullman, J. D. (1979). Introduction 1o Auton
Compuiation. Addison-Wesley, New York.

Houghton. R. C. (1984). On-line help systems: A conspectus. CACM, 27(2).

Kemighan. B. W., and Pike, B. (eds.) (1984
Prentice-Hall, New York,

Kemighan, B. W., and Pike. B. (eds.) (1984b). The UNIX Programming Environment. Prentice-Hall,
New York.

Lawrence, K. (1984), Artificial intelligence in the man/machine interface. Dasa Processing, 1, 231-236,

Lieberman, H. (1985). There's more to menu systems than meets the screen. In
ACM{SIGGRAPH Conference. Vol. 24,

Lieberman, H.. and Hewit, C. (1980). A session with tinker. Technical Report 577, MIT Al

Laboratory, Cambridge MA, September.

ackinlay, I. (1986), Awomatic Design of Graphical Presentations. PhD thesis, Computer Science

Department, Stanford University. Stanford CA.

Malone, T. W., and Lepper, M. R. (1987), Making learning fun: a taxenomy of intrinsic motivation for
learning. Lawrence Erlbaum Associates, New York.

Manna, Z. (1972). Mathematical Theory of Computation, chapter 5-3. McGraw-Hill, NY,

Mastaglio, T. (1989). Tutors coaches and eritics. Technical re
University of Colorodo, Boulder CO.

Mays. E.. Apte, C., Griesmer, J., and Kastner, J. (1988). Ex
knowledge representation. In The Fourth
Proceedings. IEEE Computer Society Press.

Merrill, M. D. (1983). Component display Theory. In Instructional-design Theories and Models: An
Overview of Their Current Status. pp. 279-334. Lawrence Erlbaum Associates. New York.

Microsoft Corp. (1995). Windows 95 User's Guide.

Michalski, R. S., Carbonell, J. G.. and Mitchell, T. M. (1983). Machine Learning: An Ariificial
Initelligence Approach. Tioga Publishing Company, Palo Alto, CA.

Minsky, M. (1976). Frames, Technical report, Al Laboratory, MIT, Cambridge MA.

Moon, D. (1987). User's Guide To Symbolics Computers.

Morris. N. M., and Rouse. W. B. (1986). Adaptive aiding for human—computer control: Experimental
studies of. Technical Report AAMRL-TR-86-005, Armstrong Medical Research Laboratory,
Wright-Patterson Air Force Base, OH.,

Myers, B. A. (1986). Visual programming, programming by example, and program visualization: A
taxonomy. In CHI '86 Proceedings, pp. 39-66.

Pirolli, P. (1986). A cognitive model and com
Human—Computer Interaciion, 2

Rath, G. I, Anderson, N. S., and Brainerd. R. C. (1959), The IBM Research Center Teaching Machine
Project. In Auromatic Teaching: The State of the Art. John Wiley and Sons,

Reigeluth, C. M. (ed.) (1983). Instructional-Design Theories and Models: An Overview of Their
Currenr Status. Lawrence Erlbaum Associates. New York.

Reiser, B. J.. Anderson, J. R.. and Farrell, R. G, (1985). Dynamic student modeling in an intel]
tutor for lisp programming. I/CAI 1.

Reisner, P. (1986). Human computer interaction: What is it and what research is needed? Technical
Report RI5308, IBM Almaden Research Center. Almaden CA.

Revesman, M. E. (1983). Validation and Application of A Model of Human Decision Making For.
PhD thesis, Industrial Engineering and Operations Research, Virginia Polytechnic, VA.

w Theory, Languages, and

). The UNIX Programming Environment, pp. 240-255,

Praceedings of the

M

port, Computer Science Department.

perience with K-Rep: An object-centered
Conference on Artificial Intelligence Applications,

puter tutor for programming recursion.

igent

140 EDWIN J. (TED) SELKER

Rich, E. (1983). Users are individuals: Individualizing user models. Inr. Man—Machine Studies, 18,
199214,

Rissland, E. (1978). Understanding mathematics. Cognitive Science, 2, 361-383,

Schofield, J., Evans-Rhodes, D., and Huber, B. (1990). Artificial intelligence in the classroom: The
impact of a computer-based tutor on teachers and students. Social Science Computer Review.

Selfridge, O. (1985). Personal communication.

Selker, T. (1989). Cognitive adaptive computer help (coach). In Proceedings of The International
Conference on Artificial Intelligence, pp. 25-34. 10S, Amsterdam.

Selker, T. (1991). Cognitive adaptive computer help. Technical Report, videotape.

Selker, T., and Koved. L. (1988). Elements of visual language. [EEE Workshop On Visual Languages,
October.

Sleeman, D.. and Brown, J. 8. (eds.) (1982). Intelligent Tutoring Svstems. Academic Press, New York.

Snelbecker, G. E. (1983), Is Instructional Theory Alive and Well? Instructional-design Theories and
Models: An Overview of Their Current Status, pp. 437-472. Lawrence Erlbaum Associates, New
York.

Suppes, P, (1967). Some theoretical models for mathematics learning. Jouwrnal of Research and
Development in Education, pp. 4-22,

Sussman, G., Winograd. T., and Charniak, E. (1970). Micro-planner reference manual. Technical
Report Al Memo 203, Al Laboratory, MIT, Cambridge MA.

Teitelman, W, and Massinter, L. (1981). The interlisp programming environment. Computer, 14(4),
25-34.

Vertelney, L.. Arent, M., and Lieberman., H. (1991). Two disciplines in search of an interface:
reflections on a design problem. In The Art of Human—computer literface Design. Addison-Wesley,
New York.

Waters, R. C. (1982). The programmer’s apprentice: Knowledge based program editing. IEEE
Transactions on Software Engineering. SE-8(1), 1-12.

Weiss, L. (1987). Conceptual model of an intelligent help system. Technical Report DDC/LW-13,
ESPREE, May.

Whiteside, J., and Wixon, D. (1986). Improving human—computer interaction: A quest for cognitive
science. Technical report, Digital Equipment Corporation, Maynard MA.

Winograd. T., and Flores. F. (1986). Understanding Computers and Cognition: A New Foundation for
Design. Ablex, Norwood NJ.

Winston, P. H. (1977). Artificial Inteiligence. Addison-Wesley, New York.

Wolfram, S. (1988). Marthematica: A System for Doing Mathematics by Computer. Addison-Wesley,
New York.

Zellermayer. M., Salomon. G., Globerson, T.. and Givon, H. (1991). Enhancing writing-related
metacognitions through a computerized writing partner. American Education Research Journal,
pp. 373-391.

Zissos, A. Y., and Witten, I. H. (1985). User modeling for a computer coach: A case study. /nr. J.
Man-Muachine Studies, 23.

