Cognitive Adaptive Computer
Help (COACH): A Case Study

EDWIN J. (TED) SELKER

IBM Almaden Research Center
San Jose, California

Abstract

User interfaces can be difficult to master. Typically, when a user has a problem
understanding the interface, computers respond with generic, difficult-to-interpret
feedback. This is a case study of COgnitive Adaptive Computer Help (COACH),
an example of a style of intelligent agent which gives more effective responses
when problems oceur in the interface between people and computers. It imple-
ments a cognirive interface which attempts to recognize the needs of a user and
responds proactively as the user is typing. It records and analyzes user actions to
adapt computer responses 1o the individual, offering usefu! help information even
before the user requests it.

The approach uses dynamic models of both the user and the domain of knowl-
edge the user is learning. These models teach and guide a user. COACH was first
used in a study which validated real-time learning and reasoning in computer
interface can improve users’ productivity and comfort with an interface.

COACH was designed to facilitate development and study of adaptive help
systems. The help given the user, the domain in which the user is being coached,
even the way the system adapts to the user, are represented in frames and con-
trolled by rules which can be changed.

COACH was first tested in teaching the problem domain of writing Lisp pro-
grams. To demonstrate the generality of COACH for teaching arbitrary problem
domains, help systems were then created for the UNIX command language and
GML text formatting language. In the original rext-based COACH implementa-
tion, a new problem domain can be supported simply by defining the syntax of the
domain and writing the help text.

The ideas have been applied to a modern graphical-user interface (GUI) in a
product version created for the 0S/2 and Windows95 GUIs. This COACH/2
system uses new teaching techniques to graphically demonstrate GUI syntax and
procedures. A see-through technique called masking draws users’ attention to
GUI objects. An animation technique called slug trails walks the user through
graphical procedures.

COACH;/2 also includes a WYSIWYG authoring approach and 100l to extend
the notion of the system being a shell for creating adaptive help systems. This tool
automatically picks up syntax from the graphical interaction with the author, so
only the help text itself needs to be written. The architecture is available as
WarpGuides in the OS/2 Warp 4 release, WarpGuides show a user how to
perform graphical actions in a graphical user interface.

ADVANCES IN COMPUTERS. VOL. 47
ISBN 0-12-012147-6

67

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

68 EDWIN J. (TED) SELKER

Current development work with COACH/2 is exploring 3-d animation,
mixing adaptive computer help with adaptive tutoring,

2 ThelCOACHSBORMNG & « v 5t i 8 5 5 0t e oem oo a e s eos e m
2.1 ANovice Lisp Programmer
2.2 A Student Programmer
2.3 AnExpert Programmer
3. Review of Literature: On-line Computer Teaching
3.1 TuteringResearch
32! HSIDSYSIBIE .o v x5 w5 5 %m0 5 5 B T 5 s e n e e a et s
3.3 Coaching Systems
34 CHHOBYSIBIHS & vvonovoami & 25 05 5 54 m e e n ooe e e o
4. Requirements For An Adaptive Help Testbed,
5. Technical Considerations for Creating COACH
5.1 Suitable Domains for Demenstrating Adaptive UserHelp
5.2 Classifying Knowledge Deficits
5.3 A Classification for the Help to Provide to Users
54 Tracking User Proficiency as the User is Working
6. An Architecture for Adaptive User 21 e uiegh yme i ogyey w0
6.1 Window Interface . . .« v vovs v e v e e e
6.2 Reasoning System
6.3 System Knowledge and the Adaptive User Model CAUND 5 i vv o n oy
6.4 Instrumented Multilevel Parser
6.5 Conclusion
T ACOACHSBREl o o e amma e o 5 s 550 e e o T
7.1 Using COACH in Open Systems
7.2 Using COACH For Different Domains
7.3 Experimentation With Help Presentation SLeatesies = .. vov s s ...,
8. Evaluation of COACH Adaptive User o O
81 PilotCOACHSwdy
8.2 Quantitative Study; Demonstrating COACH Usability Improvements . . .
83 FuwreWork,
LG T T e O
9. DevelopmentStatus
9%l Apindted Helpy .o wsswn cvssmpags oo oo "
92, SWETHIS o b 005 00 s movs mmre motrve s s e e e
s N (310, O L
A CUBCHS « i o 5 v 58 5 T8 e o m e e e o e o o
95 GuidesandMasks
9.6 Haillng IAICHOF 5 55 i 83 2000 me o oss sl
T BEME 5 665 v 00 v n e ma e s s g s R
B8 BBNEBET vovcs vt R S50 s n e e m oo g o SR
10. FutreResearchGoals vvvvvv ooy onn s
10:] Futire Bessireh « & o 2 4 5 % 8 5 5 50 0 0 o o ses o m e o e o o o o o AT
10.2 Future System Development

69
70
71
72
75
76

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

1. Introduction

COgnitive Adaptive Help (COACH) is a user help system that monitors the
interaction between the user and the computer to create personalized user help.
Imagine learning a new operating system of programming language. COACH
watches the user’s actions to build an Adaptive User Model (AUM) that selects
appropriate help advice. Just a football coach will stand on the sidelines and
encourage, cajole, or reprimand, COACH is an advisory system that does not
interfere with the user’s actions but comments opportunistically to help the user
along.

COACH chooses descriptions, examples, syntactic definitions, etc. as appropri-
ate for user-demonstrated experience and proficiency. A description that advertises
a command or function is helpful for getting started, but might become ignored if
it is presented too often. An example showing how to perform a procedure is often
valuable until the procedure is mastered, after which it is no longer useful and may
even become annoying. A syntactic definition describing the generalization of the
procedure becomes valuable when the procedure is close to being mastered,

Computer users find themselves needing classes, tutoring, help, and reference
materials in order to be able to accomplish even the simplest of tasks with a com-
puter. Terry Winograd and Fernando Flores’s book (Winograd and Flores, 1986)
discusses “breakdown™ of readiness-to-hand in terms with which we are all
familiar—a computer becoming the focus of attention because the user does not
know how to proceed. The need to seek aid frustrates the user and prolongs the
process of becoming proficient, Attempts to computerize teaching aids have
created an active research field. The impact and acceptance of computers in
teaching roles, however, continues to be elusive.

Creating computer interactions so natural that they require no outside learning
(the “walk up and use” ideal) would allow all user effort to be focused on the
primary task. The idea of a tool as an object that allows workers to concentrate
on their task, rather than on the tool, was at the heart of Martin Heidegger’s
concept of “readiness-to-hand” (Heidegger, 1977; Winograd and Flores, 1986).
COACH contributes toward that goal by giving more effective assistance to
users while they try to focus on their work, Winograd (Winograd and Flores,
1986) describes the process of managing the “breakdown conversations” as the
way to progress. When the productive conversation a user is having with the
computer to accomplish a task breaks down, it sends the user into a new conver-
sation to break through or go around the roadblock. COACH’s goal is to manage
these conversations when the computer’s “unreadiness-to-hand” is slowing
progress,

Unlike teacher-oriented learning paradigms, in which the teacher is driving the
student, the design of COACH uses a style of teaching which is driven by the
student. COACH facilitates a user’s own objectives in a work session.

70 EDWIN J. (TED) SELKER

COACH is an example of an advisory agent, as contrasted with the assistance
agent used in other help system and teaching implementations. An advisory agent
shows users what they can learn. In contrast, an assistance agent does the task for
the user. This advisory agent uses an implicit dialog with the user, working in the
background, tracking user actions and looking for opportunities to present rele-
vant, but unsolicited, advice. The user is free to ignore the advisory agent, as
opposed to many implementations of agents that engage in an explicit dialog with
the user.

The following are the research objectives addressed by COACH:

e To study the differences between an automated adaptive help system and a
standard passive help system.

e To explore automated teaching technology that shifts the teaching paradigm
away from a pre-structured format to concentrate instead on users’ individ-
ual needs. COACH is an example of a teaching paradigm that moves toward
an apprenticeship, or learn-while-doing, approach.

e To demonstrate the feasibility of an AUM-based advisory agent to guide
selection of help advice without introducing unacceptable delays in system
response. COACH is a demonstration of help system that adapts to a user
while running concurrently with the software for which help is being pro-
vided. Earlier research proposed that an interactive adaptive teaching
system was not feasible (Zissos and Witten, 1985). The COACH system
demonstrated that an interactive adaptive teaching system is indeed feasible.

e To create a tool for enabling research in adaptive learning paradigms. The
COACH architecture allows researchers to describe and test ideas about
adaptation in learning and to develop adaptive teaching approaches.
COACH allows researchers to build working adaptive help systems.

2. The COACH Scenario

Users need help while working on solutions to problems in a curriculum or
attempting to do productive work using a computer. COACH aids the user in the
mechanics of using the computer.

The computer creates an adaptive user model (AUM) of a user’s experience
and level of expertise. Machine-learning and reasoning techniques adapt the help
provided to the needs of the particular user. Such help is said to be proactive when
the computer anticipates the needs of the user and presents help before it is
requested. Both the user and the computer can initiate help, in a mixed initiative
interaction.

This learning paradigm is introduced by these three hypothetical users, working at
different levels of experience and proficiency, learning the Lisp interpreted language.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

2.1 A Novice Lisp Programmer

Freshman Bill is taking his first programming class. He has attended two
classroom sessions and is sitting down for the first time in front of the computer.
His assignment requires him to use Lisp s-expressions to make arithmetic
calculations,

The computer screen with which he works is segmented into four panes: a user
input pane to type and edit work, two help presentation panes (one general and
one more specific) and an output pane (Fig. 1). To help Bill get started using the
computer to do his work, the system encourages him to type an open parenthesis
to begin an s-expression or to type a defined word (see Fig. 2). Examples show
him this. He types (. The help changes, telling him that he must type a function
name, and gives an example. “function”, “s-expression” and “defined word"’ are
concepts in the system’s domain knowledge network. Bill remembers these words
but does not quite remember what they mean. An example of the use of a function
is displayed to get him started. Bill types ADD. The help window tells him that no
known function starts with AD, and suggests that he press the “rubout” key. He
could press the mouse button to browse available functions, but PLUS, not ADD,
is the function he now remembers from his class and he types it (see Fig. 3). As

General Help
L Token Help
User Interaction Pane Output Pane
— 444

FIG. 1. A user interface demonstrating the COACH adaptive help system.

72 EDWIN J. (TED) SELKER

Adaptive User Model System
Current Environment: LISP-TOP

Example:
% y 33

Oescription
This ts & LISF READER which caaches gragramming LISP

Tupe LISP commands or EMACS editing Commands:

Syntax:
tg start writing in LISP. TYPE: { ar a defined SvmME0L.

For EMACS help use the EDITOR-HELF meru.

Ad begins na farm known to COACH. Unless this Ls a system functicn
or you intend to defime it later. please carrect your wark,

FiG. 2. The COACH interface after one character is typed.

Bill types a space after PLUS, an example of using PLUS, together with a simple
description and a simplified syntax, is presented on the help pane.

The context-dependent help allows Bill to avoid the usual startup stalemate in
which a user does not quite know what to type to get started. Novice programming
problems such as mixing syntax with ideas have also been averted.

2.2 A Student Programmer
Sophomore Harry is trying to write a program. He types DEFUN. The help

COGNITIVE ADAPTIVE COMPUTER HELP (COACH)

Adaptive User Model System
152-707

= 99

Descripzion

This 15 a LISF READER wnich coaches programming LISP

Tupe LISF commands or EMACS eoit:ing Commands:
Syntax:

o start weiting in LISP, TYPE: ' or 3 aefined STHBOL.
For EMACE helg use the ERITOR-HELF menu.

bd begine no form <rown to CCACH,

Unless this :e a sys=em function
Or you irntend to define it later.

olease correct jour work.

FIG. 3. The COACH interface during a simple error situation.

pane reminds him that he must name the function being defined and then give it
an argument list. The system gives him an abbreviated syntax, omitting the diffi-
cult argument types (optional arguments, keyword arguments, etc.). He types
TIMES-2 (I) (PLUS. The system shifts its focus to helping him with the PLUS
function. An example of a use of PLUS he has already made is displayed. He real-
izes that he did not really mean to add numbers. He back-spaces and types
TIMES I 2). The system changes its focus of help to TIMES

as Harry is typing it,
and back to DEFUN when he is done with TIMES.

74 EDWIN J. (TED) SELKER I

' Current Ervirarrenz: DEFUL
Description .

mam=z 31d Ls2 af Lisp furcticn calls
s FupCTion can : Lz ang sther “urctian.

w13 unfamilisc. then Meuss on Lisp-Concsats,

13 reant o b2 eealusted.

RN |

FIG. 4. The COACH interface supporting learning about a specific
Form and the idea of form.

Intermediate programmers like Harry often have problems keeping track of the
context and appropriateness of program pieces. COACH works to keep this type
of programmer oriented by providing context-sensitive help and user-examples.
An instance of user-example help is shown in Fig. 5; the last correct use of
TIMES-2 (TIMES-2 4) was presented when the user forgot to include an
argument in the function call.

= 1 1S mat an EVALLGHLE: whizh i3 SNYLHLIng thnar | ISP

* Error in EVAlARLE, Eq.- Yaun
* Last failure with EVALLAAL F-

ork anc tey again,

FiG. 5. The COACH interface using automatically accumulated k

nowledge help for a
user-defined form,

2.3 An Expert Programmer

ition to present an argument list for it. If she makes an CITOr (€.2., Wrong argument

76 EDWIN J. (TED) SELKER

type), the system changes its view of her expertise slowly at first. If she keeps
making errors, it will change its opinion of her more quickly and begin to provide
more help: it will show her examples and remind her of things which are related
to the constructs she is using and the language concepts involved.

Expert programmers must be aware of anomalous, as well as simple, rela-
tionships between parts of a computer language. Even if they do not memorize
them, experts are likely to use sophisticated syntactic features. If Connie were
using function or variable names which she had not yet defined, the system
would put these names on a list of undefined functions. A menu would allow
Connie to select from those names to aid her in remembering to define them
later. In other words, COACH would select information for experts on the
obscure, anomalous parts of Lisp without bothering them with introductory
information.

The above vignettes illustrate an adaptive user interface model tracking users’
needs to teach what they need to know about their computer environment while
they are engaged in their own work. A videotape (Selker, 1991) demonstrates
COACH.

The following overview of relevant work describes the current state of
computer aided instruction (CAl) and inspirations for the COACH approach.

3. Review of Literature: On-line Computer Teaching

COACH is a vehicle for research in human—computer interaction and Al as
applied to teaching and learning.

Teaching styles impact students’ roles in their learning tasks. Tom Mastaglio
(Mastaglio, 1989) described a continuum of interaction styles for computer teach-
ing: from a tutor who prescribes what a student should do—to a coach who kib-
itzes with a student while the student is trying to do something—to a critic who
reviews work after it is completed. In these three teaching styles the point at
which the system intervenes is varied relative to a student’s phases of work:
design, construction or evaluation.

The use of computer systems for teaching has been called computer aided
instruction (CAI), intelligent computer aided instruction (ICAI), artificial intelli-
gent computer aided instruction (AICAI), or intelligent tutoring systems (ITS).
These names have been created by their proponents to reflect the technological
and research progress through the years. A common component of all such work
is a prescribed educational goal to which students are guided with subgoals and
tasks. The curriculum can take the form of text with comprehension tests or
problem sets or educational games. The term CAI will be used in this paper to
refer to all such systems.

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 77

Research in CAI has included experiments using artificial intelligence (Al
representation, reasoning. and machine-learning techniques to direct a tutoring
session (Reiser er al.. 1985; Sleeman and Brown. 1982). This section outlines
progress in CAI highlighting the roles Al has played. CAI teaching styles can be
broken into the following classes:

® Tutoring systems which include a syllabus or courseware schedule of what
a user should know when, and how to teach it. Such systems use generic
madels of what all students need to learn.

® Help systems which answer questions a user asks. These have no syllabus or
model of what a student needs to learn and only interact with a user when
the user requests assistance.

® Coaching systems which remark on user problems and successes as they
occur. Like traditional help systems, coaching systems help users while they
are working on problems. Unlike help systems, coaching systems offer
unsolicited advice. A coaching system might also have mini-tutorials useful
for specific situations in which users find themselves.

® Critic systems suggest or perform changes to completed user solutions. The
original Lisp Critic (Fischer er al., 1985) worked in this way, giving criti-
cism and making improvements to work students brought to it. A critic
allows users to think and solve problems on their own, only giving them
advice for a completed attempt. This can be compared to the grading and
feedback phase in a traditional classroom course format, or the project
review phase common to design projects.

A major distinction among these styles concerns motivation for, and timing of,
teaching feedback,

3.1 Tutoring Research

Tutoring systems instantiate the classic theory of classroom teaching, that stu-
dents should learn things in a stepwise fashion. These systems present a session
based on an analysis previously made by a courseware designer of what a student
needs to learn and in what sequence. Such an approach is not generally responsive
to an individual user, except to indicate performance scores. Coaching and help
systems respond immediately when the user has a problem. A critic does not
provide suggestions until the user has completed a solution.

Current theories of instructional design (Reigeluth, 1983) focus on impor-
tant issues of syllabus design (Aronson and Briggs, 1983), student motivation
and teaching students how to learn (Collins and Stevens, 1983). Dennis
Aronson and Leslie Briggs, for example, developed a widely referenced list of

78 EDWIN J. (TED) SELKER

“instructional events” centered on steps of teaching a topic (Aronson and
Briggs, 1983):

(1) gaining (the learner’s) attention;

(2) informing the learner of the objective;

(3) stimulating recall of prerequisite learning;

(4) presenting the stimulus material;

(5) providing learning guidance;

(6) eliciting the performance;

(7) providing feedback about performance correctness;
(8) assessing the performance:

(9) enhancing retention and transfer.

Such a list encourages the teacher to consider the reacher's goals for the student
and use these objectives to guide interaction with the student.

How should educational approaches themselves be judged? The educational
goals differ in varying approaches. Glen Snelbecker (Snelbecker, 1983) created
a list of nine educational issues that may be used to evaluate the priorities of a
particular teaching model. The teaching model might emphasize the importance
of student preparation for a topic or approach, gaining and keeping student
attention, quality teaching presentation, timely response, appropriate feedback,
teaching for retention and use, presenting material to aid student understand-
ing, encouraging students to learn to use their creativity, or the model might
focus on management of teaching situations. A teacher’s goals may be met by
choosing materials based on a model which emphasizes the desired aspects.
With the exception of student preparation, the COACH teaching model’s
adaptive approach allows it to concentrate on all of the above issues as
appropriate.

Tutoring systems depend on syllabi to guide students. Computer tutors most
often guide lessons by branching on students’ responses to yes/no, multiple
choice, or word fill-in questions. Other tutoring work uses more sophisticated
techniques to help guide a user through a lesson plan.

CAI work dates back to at least the late 1950s (Rath et al., 1959). Suppes
(Suppes, 1967) describes the classic CAI method of mechanizing a traditional
paper textbook. In place of a textbook, a user reads text and questions from a com-
puter screen. The user works through the text by typing word or number responses
to problem questions. Most commercial futoring systems use this mechanized
programmed textbook method of presenting information to a student. Even early
tutoring systems varied their responses relative to a user’s answers, something
that currently available commercial selp systems fail to do.

CAI research has taken the syllabus approach to learning much farther than the
initial automated textbook efforts. John Anderson’s Lisp Tutor has a sophisticated
way of presenting the lesson questions as programs for a student to write (Reiser

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 79

et al., 1985). Exercises require students to write programs designed to teach about
a particular concept or tool. The student’s solution can vary from the teacher’s
prototype in the naming of variables, but cannot vary the functions used; for
example, a student cannot use the “TF” function where the system expects the
“COND” function. The student answers questions and writes programs; the
system guides the student through the syllabus. The system certifies a student as
a learned programmer relative to the problems in the syllabus that have been com-
pleted correctly.

Anderson’s system improves the learning abilities of Lisp students. His system
expands on the CAI textbook-style syllabus. A student’s progress is guided by
knowledge formalized in “if, then” rules, and the word or number answers of
early CAI systems are replaced with programs the user must write.

In one experiment (Corbett and Anderson, 1989), the Lisp Tutor was modified
to allow users to use the Lisp interpreter to experiment with Lisp statements.
Students could explore the Lisp environment if they desired to “try things out”
without leaving the rutoring environment. Curiously, in this experiment, student
progress was retarded by allowing them to work on things other than the solution
to the current futoring problem. In this otherwise controlled learning environ-
ment, the flexibility of allowing exploration seemed to distract the student
(Corbett and Anderson, 1989). Educational settings in which students thrive on
exploration do, however, exist.

Seminal work in applying Al in the field of education is typified by John Seely
Brown and Richard Burton’s productive collaboration. Brown and Burton’s
“Debuggy™ (Burton, 1978) introduced knowledge representation and reasoning
into CAL In grade school studies, they showed Debuggy could teach a student
about long subtraction with carrying, understanding the student’s mistakes better
than a teacher. Their approach to teaching subtraction included cataloguing the
one hundred twenty or so possible types of mistakes a student can make while
doing a subtraction problem. The system used a static sub-skill network to char-
acterize what skills the student might be lacking which generated particular errors
in an answer to a problem. For each possible mistake, the system had knowledge
describing underlying missing concepts which could be responsible for the
mistake. Debuggy’s sophisticated representation of the problem domain enabled
it to use a reasoning approach to evaluate bugs in student subtraction strategies.
Pre-analyzing the entire solution and error domains gave the system the ability to
explain all incorrect subtraction algorithms.

The reasoning approach which Brown and Burton used in Debuggy required
them to completely describe and analyze all possible subtraction errors, Many
domains of interest are much larger than subtraction; identifying all possible mis-
takes in them is usually impractical. In fact, Brown and Burton found teachers
seldom understood subtraction in the detail that the Debuggy approach used to
reason about potential gaps in student understanding.

80 EDWIN J. (TED) SELKER

The syllabus approach to teaching has been validated as useful in some
situations. For example, the order in which students learn two kinds of loop
constructs can determine how easily they can master them both. Jeff Bonar
(Bonar and Soloway, 1985) ran a large scale study to test this. Specifically, he
taught some students the REPEATUNTIL construct in Pascal before the
DOWHILE construct and some after. The students did better when they learned
REPEATUNTIL first. The order in which new skills are introduced can be
important, even when the learning of one skill is not a prerequisite to the learn-
ing of another. Evaluations of the sort done by Jeff Bonar are especially instruc-
tive. Unfortunately, because various educators (and learners) may have
different goals. not all issues of educational approach can be definitively
resolved.

3.2 Help Systems

While tutoring systems present a curriculum through which a student travels,
help systems at the other extreme allow motivated users to ask questions of
the system. Many students are not motivated to follow the rigid lesson plan of
a tuforing system. Many computer users come to an unfamiliar computer
system with relevant experience and do not need to learn everything about it as
though they were novice computer users. Their reason for using the new system
may be that they have a particular task they want to perform that requires that
system. Students absorb information when they have a use for it. Rather than
provide a generic syllabus for learning the entire system, it is preferable to
center the aid users will receive from the system on their specific needs related
to that task.

Unlike tutoring systems, help, coach, and critic systems work with the stu-
dents in productive situations. Systems that support student goals can allow the
student flexibility. They can also provide user support more easily than systems
that give students simplified so-called “training-wheels” ruroring outside of
their work environment. Training-wheel rutoring systems protect students from
a realistic work situation, but must be left behind when a student is ready to
experiment or begin a real project. Systems which respond to user inquiries in
work situations are termed help systems. Unlike other CAI research,
most research on help systems has focused on the quality of information
available to aid the user and has not extensively explored the use of Al or other
strategies for delivering the information appropriate to the situation
(Borenstein, 1985).

Nathaniel Borenstein (Borenstein, 1985) performed behavioral experiments
showing that /ielp systems are more effective when they are available from
within (integrated in) the computer program than when a separate fielp system

1er
on

nts
om
em

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 81

must be consulted. His studies also showed that Aelp systems are improved
when they give users context-dependent responses, basing the information users
receive on the part of the computer program with which they are interacting.
Borenstein also observed that the quality of help text and its relevance to the
particular situation are more important than other usability issues. such as
graphic design or the ease of asking for help. That is, content matters more than
form.

3.3 Coaching Systems

A computer aid for using or learning a body of knowledge may be called a
coach when, like a human coach, the computer trains, reprimands, gives aid for a
personal weakness, and tries to provide a needed idea or fact when appropriate.
As well as being extravagant, human coaches can be wrongly perceived. There is
evidence that continuous human guidance provided during students’ writing
activity is often seen as ill-intended, leading students to reject it (Brehm and
Brehm, 1981). Computer-based guidance does not arouse such a reaction
(Zellermayer et al., 1991). However, until now such coaching systems have relied
on what users are doing (context) or whether they have made an error, without
using any representation of the users’ actual performance or users’ understanding
of the system.

To be able to respond to the user’s actual level of proficiency, the system needs
to learn from the user’s actions. If a coach system had this ability. it could be said
to have an adaptive user model (AUM). The system could build the adaptive
model by asking a user questions. Elaine Rich’s GRUNDY (Rich, 1983) system
is well known for using a simple nonadaptive user model to choose books for
users. A user filled out a “form™ which her system used to create a user model.
GRUNDY consulted this user model “stereotype” to select library books which
might be interesting to that user. An adaptive version might include feedback and
followup questions. This work. instead, explores user models which are built by
watching the user’s actions (Selker. 1989).

An important issue is whether unsolicited feedback is intrusive, derailing and
frustrating users, or whether it can offer welcome advice (Bereiter and
Scardamalia, 1984). Michael Zellermayer (Zellermayer et al., 1991) performed a
study which gave mixed results concerning unsolicited computer-presented
advice. A system called “The Writing Partner” cued students with so-called
“metacognitive” questions, concerned with higher level information than the
writing itself, such as planning and organizing. The system attempted to help the
students plan and organize their papers by asking questions such as: “Dao you want
your composition to persuade or describe?” In a comparison of three groups of
students writing essays, one group received no guidance, one group received

82 EDWIN J. (TED) SELKER

metacognitive guidance when they solicited it from “The Writing Partner”, and
one group received unsolicited metacognitive guidance from “The Writing
Partner”.

Many people have the intuition that unsolicited computer advice would intrude
and slow a user down. And, indeed, while using “The Writing Partner” during the
training period, the students in the group that received unsolicited advice took
longer to accomplish their work and did not show an improved essay writing
ability. While this might seem to corroborate the impeding, intrusive advisor
hypothesis, those same students who had been continuously advised on the
metacognitive aspects of their writing tasks were able in essays written two weeks
later (on paper, not using “The Writing Partner™) to write better essays than
students in the other groups.

This provocative study shows how a coach offering unsolicited help can teach
a person a new skill. Unfortunately, it also indicates that learning this new skill
(essay organization and planning) with this type of unsolicited help has a cost.
Happily, this study provides new evidence that unsolicited help can shorten rather
than prolong a task.

The idea of an explicit model or expectation of a user’s performance is not new.
Burton and Brown'’s electrical circuit trouble-shooting learning environments
(SOPHIE 1, 2 and 3) (Burton and Brown, 1982) give important results concern-
ing user modelling. SOPHIE 3 included an evaluation strategy which compared
students’ performances in designing circuits with those of expert circuit design-
ers. The system reasoned about differences between novices and experts; in so
doing, it attributed problems encountered by the novices to bugs in the novice
user’s otherwise expert approach. SOPHIE research promoted user exploration of
the domain as a way of improving the task relevance of a syllabus. Since either the
system or the user could control the session, these systems can be said to have
provided mixed initiative interaction.

One important conclusion which this work (and others e.g., Feldman, 1980;
Genesereth, 1982) put forward was the fallacy of the novice having an expert user
model with some missing parts. Burton and Brown, instead, concluded that
novices have a qualitatively different model of a domain than experts. Because of
this, a novice user cannot easily be evaluated relative to an expert model. An
expert has understanding which does not necessarily follow the procedural and
simplistic analysis of a beginner.

Educational systems like SOPHIE or Burton and Brown’s WEST (Sleeman and
Brown, 1982) involve users in a little world in which they can explore, learn, and
try things out. Games with simulation are widely used in CAI (Sleeman and
Brown, 1982). They are particularly appropriate in coaching systems. The feed-
back and integration of such environments is natural for the coaching paradigm.
Game user interfaces often include a consistent simulated environment referred to

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 83

as a microworld. Microworlds and other game teaching approaches have the
advantage of addressing student motivation as an explicit goal.

3.4 Critic Systems

A critic system criticizes or evaluates work at a specific point, either when
requested by a user or at the end of a session. Only when a user has come to this
point does the ¢ritic system offer its aid. This approach has often been employed
in order to allow the computer to analyze student work off-line.

The advantage of a critic system is that it gives the user time to reflect upon
the system’s suggestions and create a solution without interference. However,
the disadvantage is that the advice is not available at the time the problems
arise.

Adrian Zissos and lan Witten (Zissos and Witten, 1985) built a prototype adap-
tive critic system which could analyze transcripts of EMACS text editor usage
after a user session. ANACHIES, as it was called, could decide how to improve a
person’s use of EMACS editor commands. Zissos and Witten's paper offers a

real time

. Coaches

e

$

p

0

n

$

i

v

e

n

e

5 Programmed

s teaching =

batch with tes Critics
Static Designed for user

Adaptability

FiG. 6. An illustration of the responsiveness and educational goal differences which charac-
terize different computer learning environments. The horizontal dimension. adaptability, refers
to the system’s ability to be changed for a situation or user. The shaded ellipse indicates where
systems which automatically change or adapt to a user’s goals would lie in the illustration.

84 EDWIN J. {TED) SELKER

pessimistic view of the feasibility of having a system react as the user needs assis-
tance. Their research convinced them that the computational requirements for
using adaptive Al techniques in interactive applications could not feasibly be met
with the computers available in the foreseeable future, a cynicism which this
research demonstrates to have been unwarranted.

This section has reviewed CAI teaching styles in terms of their responsiveness
to users and how their educational goals are chosen (Fig. 6). Critic systems,
for example, offer batch responses, while coaching environments respond
interactively to a user.

While much work has been done on tutoring environments, demonstrations of
real-time adaptive teaching environments have not been convincing. Researchers
still question the reasonableness of real-time adaptation. Until now, neither
the utility of adaptive interfaces of any type nor the possibility of unintrusive
unsolicited help have been shown. COACH offers results addressing these
concerns. The following sections describe the COACH interface, concentrating
on student-motivated teaching and learning interaction.

4. Requirements for an Adaptive Help Testbed

Tools for building computer aided instruction systems (CAls) are usually
referred to as CAI authoring systems. Tools for managing a rule base and provid-
ing a ready-made production system that can run these rules are often referred to
as expert system “shells”, connoting their ability to be hard containers that can
store knowledge or representations (Barr and Feigenbaum, 1984). The earliest
described rule system. PLANNER (Hewitt, 1972), with its implementation,
MICRO-PLANNER (Sussman er al., 1970), could be described as a shell for
developing Al applications, It was quite a general system in which “theorems”,
which can be generally thought of as rules, could be specified as being useful for
forward or backward chaining. Filters specified classes, which can be loosely
thought of as rule sets. More widely available systems like EMYCIN (Clancy,
1986) and Intellicorp’s KEE (Fikes and Keeler, 1985) contain many tools to rep-
resent and reason about a domain. As well as providing an authoring system in
which teaching information could be changed, an adaptive user model would
be used as a shell in which reasoning about the teaching process itself could be
modified.

An Al practitioner using an expert system shell can utilize the shell’s rep-
resentation and reasoning machinery without having to build it from scratch.
Shells are designed to lever Al practitioners” efforts by allowing them to create
expert systems by merely describing the rules relevant to the task or skill domain;
the practitioner may then use the reasoning tools provided in the shell. The
challenge to building an Al application is understanding the domain knowledge

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 85

that is to be embodied in the application, understanding the reasoning relation-
ships in the knowledge, formalizing these, and converting them into the Al shell’s
representation and reasoning formalisms.

COACH, which is described in detail in the following sections, is a shell for
adaptive coaching. It provides machinery for formalizing both teaching and
domain knowledge for coaching user interfaces. COACH is designed to allow
a curriculum designer to encode a domain to be taught. It is also designed to
allow an educational researcher to encode theories of when and how to present
information to a student. Additionally, COACH allows the cognitive scientist
to encode approaches to gathering user information and methods for altering
treatment of students based on their responding behavior.

The courseware developer’s process of converting the system to teach in a new
skill domain requires the following steps:

(1) Identify a task or skill domain,

(2) Identity any delimiters and other token types that the system does not
already have.'

(3) Write token handling function methods for the domain’s token types not
already supported.

(4) Change the token table for parsing delimiters. '

(5) Identify commands in the skill domain for which help initially will be
made available.

(6) Describe the syntax of the language being taught in the COACH formalism.!

A primitive help system would then exist for the skill domain. The system
would be able to check user syntax, look for undefined functions and variables,
learn about user examples and add help for new and system functions. It could
also increase and decrease help and change levels of assistance.

The system would not yet know about relationships between syntactic units,
concepts, basis sets or required knowledge. As described in Section 6, these create
a representation for generating adaptive help which can remind a user of related
material and concepts in the skill domain when appropriate. Identifying the rela-
tionships between parts of the domain then allows the developer to add deeper

knowledge about the skill domain. This can be accomplished with the following
steps:

(1) Identify skill domain concepts.
(2) Identify basis sets in the skill domain.
(3) Identify required knowledge for skill domain parts.

' COACH/2 automates much of 2, 3. 4. and 6 above, allowin

g the author to identify and annotate
a GUluing a WYSIWYG authoring tool.

86 EDWIN J. (TED) SELKER

(4) Write description, syntax and example text for different expertise levels of
each skill domain part.

Just as Al shells have simplified Al application development, a shell for testing
and extending adaptive help simplifies experimentation and development of adap-
tive help applications. As an expert system shell requires a practitioner to for-
mally understand the reasoning that is included in an Al system, so an adaptive
help shell requires the courseware designer to understand the formal syntax of the
language for which the system is to produce help and the relationships between its
parts (Selker, 1989).

For as long as computers have existed, people have talked of the possible value
of intelligent computer assistants. Unfortunately, the architectures suggested have
not been entirely successful. Either they cannot run interactively with a user, or
they have not been shown to improve the user’s performance (Zissos and Witten,
1985; Gentner, 1986; Waters, 1982). The COACH implementation has neither of
those problems; it has been demonstrated to run interactively and improve user
performance.

5. Theoretical Considerations For Creating COACH

After years of work, researchers came to the conclusion that proactive interac-
tive adaptive computer interfaces were not feasible (Zissos and Witten, 1985;
Gentner, 1986; Waters, 1982). This work challenges that conclusion and demon-
strates an example of such a system. The demonstration relies crucially on an
understanding of the constraints and requirements of real time response. To
satisfy these constraints and requirements, the following questions must be
addressed. What kinds of domains are interesting and possible to work with?
What kinds of errors do users make? In what ways can these errors be addressed?
What teaching techniques can be used without undue computational overhead?
This section addresses these issues. Section 6, which describes the COACH archi-
tecture, addresses language theory issues that pertain to evaluating user work (see
Section 6.4). -

5.1 Suitable Domains for Demonstrating Adaptive User Help

Demonstrating that adaptive user help is a viable approach requires showing
both that it will work for an important class of interfaces and that it will provide
valuable improvements over current help systems. The class of interface chosen
was text; the first domain chosen was Lisp.

Text entry is probably the most common interactive technique used to commu-
nicate with computers. Even in the age of graphical languages, many operating

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 87

system command languages, computer application interfaces, text markup
languages and programming languages are interpreted text interfaces. Text was
chosen for the initial COACH implementation because text is computer parsable
and used in so many interfaces. Also, learning a text-based interface forces a
user to confront difficult educational issues, and to w

ork with incomplete and
inconsistent knowledge.

Computer interfaces often include commands which are too complicated or
too seldom used to be easily remembered. To show that COACH will alleviate
such problems, the representative demonstration domain should contain many
commands with complex syntax.

Computer interfaces contain many interdependent commands and concepts.
Thus, a representative demonstration domain should also include complex
interdependencies.

Computer interfaces often allow more than one way of doing things. Therefore,
a demonstration domain should permit redundancies and alternative solutions.

The information the users must master often changes as time goes on.
Therefore, a demonstration domain should be extensible.

Educational domains are often too large to enumerate or analyze fully. The
domain should be larger than the implementation can fully represent.

To demonstrate adaptive user help, a domain was sought which would show
several strengths of the approach: the ability to cope with a large and Changing
domain, the ability to extend help to include additions made to the domain by the
user, the ability to permit solutions to have a complex structure, and the ability to
coach in domains relying upon many difficult concepts.

Lisp programming is a domain which provides all of these challenges. Many
pedagogical tools are designed for limited or toy domains. Lisp is extensible,
requiring a help system that will work even when the skill domain changes and
enlarges. Working with a domain that changes and enlarges (i.e., an “open
system” (Hewitt, 1985)) is a test of the robustness of COACH. Lisp is a complex
open system that allows demonstration coaches to work in a realistic domain. Lisp
has redundant ways of doing things that require the System to act in ambiguous
situations. Lisp is also a domain for which other people have built intelligent
tutoring tools. This allows COACH to be compared to and benchmarked against
their work. COACH/2 was explicitly designed to allow experimentation with
teaching GUI procedures and coaching the use of dialog boxes.

5.2 Classifying Knowledge Deficits

A user is trying to learn a skill domain, €.g., Lisp. The initial implementation
of COACH was designed for skill domains that require interpreted text input.
Users must remember keywords, delimiters. syntax, and their previous input to
effectively use text-based programming languages and computer command line

88 EDWIN J. (TED) SELKER

interfaces. People forget; even experts are always working with gaps in their
knowledge. These gaps may be classified into three types:

® /ssue—ithe focus of what a person is trying to learn. This is the material users
arc aware of and know they do not know. On-line help system queries are
useful for learning issies. COACH shows such information automatically,

® [nconmplete—the knowledge a person does not know exists, These are actual
holes in the particular user's knowledge. COACH points out general knowl-
edge when a user is having difficulty in a particular area.

® [nconsistent—the knowledge users think they know but do not. COACH
points out errors to highlight such inconsistencies.

5.3 A Classification for the Help to Provide to Users

Interesting models and theories of instruction and instructional design exist
(Reigeluth, 1983). David Merrill's (Merrill, 1983) “Component Display Theory”
describes structures which educators use to organize their efforts. He separates
domains of content into facts, concepts, procedures, and principles which can be
known well enough to remember and apply correctly in appropriate situations.
Such a taxonomy centers the process of learning on a domain and its interrelation-
ships. This is extremely useful for creating a network of knowledge relationships
which characterize the domain.

Edwina Rissland (Rissland, 1978) created a simple taxonomy of help examples.
It highlights the importance of providing different kinds of examples appropriate
to the expertise level of the user,

Rissland’s help taxonomy consists of four levels of help:

® Starter help is used at a novice level, Only simplified basic information is
provided. Novices depend on the literal cues in a problem situation (Glaser,
1985). The information given them, then. must be carefully designed so as
not to mislead them.

® Reference help is more complete to familiarize users with standard usage.

® Model help is a complete description of what something is and how to use it.

® Luperr help is machine-level description such as one might find in reference
manuals.

This taxonomy of help examples shown to a user can be refined to segment
each /evel of help into types of help a student may need. For COACH, this taxon-
omy is extended to distinguish and include examples of correct usage, legal
syntax and descriptive text telling how and when to use something:

® Example help is an actual demonstration of an exemplary solution or solu-
tions. Despite efforts to teach design through concepts and theory, the only

COGNITIVE ADAPTIVE COMPUTER HELP (COACH) 89

effective teaching tool for design is commonly agreed to be the providing of
examples (Vertelney er al., 1991). Moreover, procedural and syntactic
knowledge are often most easily conveyed through examples.

® Description help is an explanation of the utility and use of a solution type.
This information can range from philosophical background to an explana-
tion of the use of a specific language part suggested for the solution to a
user’s problem.

® Syniax help is a template showing the structure of a legal solution. For users
to apply a specific statement in varying situations, they must internalize a
model of its utility; syntax is the essence of a concise definition.

5.4 Tracking User Proficiency as the User is Working

Various approaches to analyzing knowledge about users have been tried and
have been found to be problematic. Systems such as Don Gentner’s (Gentner.
1986) used mathematical proofs of programming correctness to decide what a
user was doing. The problem with this approach was that the computation
required for these proofs grew exponentially with the amount of user work under
analysis (Hoperoft and Ullman, 1979) which limited its utility for large bodies of
work.

Zissos and Witten's EMACS critic system, ANACHIES, used cluster analysis
to make determinations of user capabilities (Zissos and Witten, 1985). This, too,
was a computationally intensive procedure which grew exponentially with the
size of the language.

Care has to be taken to create an architecture capable of recording user activity
in a representation which it can use to reason about how to provide help and react
as the user is typing.

Careful use of representational, reasoning and learning techniques make this
real time response possible. Several strategies can be used in the representation to
limit knowledge search and access problems. Relationships in the knowledge rep-
resentation may be recorded and stored as links as soon as they are known. Search
would thereby be diminished by the pre-defined network created by these links.
By limiting the depth of relationship links, search difficulty caused by complex
links is decreased. As many user model characteristics as possible would be
recorded as scalars, so as to limit representation growth and reasoning difficulty.

Several strategies would be used to make the reasoning system efficient. The
rule system would use an “if/then forward-chaining approach” and avoid the
less determinate, computationally extravagant “backward-chaining means/ends
analysis™ (Barr and Feigenbaum, 1984), The reasoning can be broken into rule
sets which would be used on specific knowledge and on specific parts of the rea-
soning process. These segmentations of reasoning problems decrease complexity
when searching through the rules and searching in the knowledge.

90 EDWIN J. (TED) SELKER

Finally, it is important to choose learning techniques which are feasible for real
time computation. In order to learn in real time, the system should limit itself to
opportunistic and simple hill-climbing learning. Below is a classification of learning
taken from Machine Learning (Michalski et al., 1983). This classification is anno-
tated to show low computational cost learning techniques which could be used in an
adaptive learning system to organize the ways the system can change its behavior:

® Learning from examples is the practice of using specific solutions already
achieved in more complex situations. This technique can be used in the
COACH interaction style to collect user-provided syntax and examples, and
to offer help for user-defined variables and statements. In the interaction
style, syntax may be collected by recording user definitions. Examples can
be collected from user work.

® Learning by analogy is gathering knowledge in one situation for use in
another similar situation. This kind of learning can be used by COACH to
decide when to explain things in terms of skill domain parts the user already
knows. The help system architecture would also include a network of skill
domain parts in which it could access information for this purpose.

® [earning from instruction is utilizing a user interface or special language to
introduce knowledge into the system. A courseware designer uses this tech-
nique to modify a CAI system without programming. Expert systems and
most state-of-the-art Al education systems rely exclusively on developer
modification to change response behavior. Modifications and improve-
ments for the Lisp Tutor (Corbett and Anderson, 1989), and the Lisp Critic
(Fischer et ai., 1985) are made in this way. COACH is designed to allow a
researcher to add facts and rules that improve the adaptive user model
system without writing Lisp code. Observations of students using the
system give the researcher ideas of how to change the way the system treats
a user in different situations. These ideas are put into additions and changes
in presentation text or presentation rules.

e Learning by programming is simply the practice of having a developer add
knowledge to a system by actually writing code. Before rule systems
existed, this was the only way of improving an Al application. Any system
can be extended by programming to add function or change domain.

The technology described above is used in the following section to present
the COACH architecture, which enables real-time adaptive help in interactive
computer environments.

6. An Architecture for Adaptive User Help

This section introduces the structure that enables adaptive coaching.
The adaptive help system can be modeled with four interacting parts or objects:

